1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
|
import analytics
import datetime
import numpy as np
import pandas as pd
from . import dbconn
from .exceptions import MissingDataError
from scipy.special import h_roots
from dateutil.relativedelta import relativedelta, WE
from contextlib import contextmanager
from functools import partial, wraps, lru_cache
from pyisda.date import pydate_to_TDate
from pandas.api.types import CategoricalDtype
from pandas.tseries.offsets import CustomBusinessDay
from pandas.tseries.holiday import get_calendar, HolidayCalendarFactory, GoodFriday
from bbg_helpers import BBG_IP, retrieve_data, init_bbg_session
from quantlib.time.date import nth_weekday, Wednesday, Date
fed_cal = get_calendar("USFederalHolidayCalendar")
bond_cal = HolidayCalendarFactory("BondCalendar", fed_cal, GoodFriday)
bus_day = CustomBusinessDay(calendar=bond_cal())
tenor_t = CategoricalDtype(
[
"1m",
"3m",
"6m",
"1yr",
"2yr",
"3yr",
"4yr",
"5yr",
"7yr",
"10yr",
"15yr",
"20yr",
"25yr",
"30yr",
],
ordered=True,
)
def GHquad(n):
"""Gauss-Hermite quadrature weights"""
Z, w = h_roots(n)
return Z * np.sqrt(2), w / np.sqrt(np.pi)
def next_twentieth(d):
r = d + relativedelta(day=20)
if r < d:
r += relativedelta(months=1)
mod = r.month % 3
if mod != 0:
r += relativedelta(months=3 - mod)
return r
def third_wednesday(d):
if isinstance(d, datetime.date):
return d + relativedelta(day=1, weekday=WE(3))
elif isinstance(d, Date):
return nth_weekday(3, Wednesday, d.month, d.year)
def next_third_wed(d):
y = third_wednesday(d)
if y < d:
return third_wednesday(d + relativedelta(months=1))
else:
return y
def prev_business_day(d: datetime.date):
if (offset := d.weekday() - 4) > 0:
return d - datetime.timedelta(days=offset)
elif offset == -4:
return d - datetime.timedelta(days=3)
else:
return d - datetime.timedelta(days=1)
def adjust_prev_business_day(d: datetime.date):
""" roll to the previous business day"""
if (offset := d.weekday() - 4) > 0:
return d - datetime.timedelta(days=offset)
else:
return d
def next_business_day(d: datetime.date):
if (offset := 7 - d.weekday()) > 3:
return d + datetime.timedelta(days=1)
else:
return d + datetime.timedelta(days=offset)
def tenor_to_float(t: str):
if t == "6m":
return 0.5
else:
return float(t.rstrip("yr"))
def roll_date(d, tenor, nd_array=False):
""" roll date d to the next CDS maturity"""
cutoff = pd.Timestamp("2015-09-20")
def kwargs(t):
if abs(t) == 0.5:
return {"months": int(12 * t)}
else:
return {"years": int(t)}
if not isinstance(d, pd.Timestamp):
cutoff = cutoff.date()
if d <= cutoff:
if isinstance(tenor, (int, float)):
d_rolled = d + relativedelta(**kwargs(tenor), days=1)
return next_twentieth(d_rolled)
elif hasattr(tenor, "__iter__"):
v = [next_twentieth(d + relativedelta(**kwargs(t), days=1)) for t in tenor]
if nd_array:
return np.array([pydate_to_TDate(d) for d in v])
else:
return v
else:
raise TypeError("tenor is not a number nor an iterable")
else: # semi-annual rolling starting 2015-12-20
if isinstance(tenor, (int, float)):
d_rolled = d + relativedelta(**kwargs(tenor))
elif hasattr(tenor, "__iter__"):
d_rolled = d + relativedelta(years=1)
else:
raise TypeError("tenor is not a number nor an iterable")
if (d >= d + relativedelta(month=9, day=20)) or (
d < d + relativedelta(month=3, day=20)
):
d_rolled += relativedelta(month=12, day=20)
if d.month <= 3:
d_rolled -= relativedelta(years=1)
else:
d_rolled += relativedelta(month=6, day=20)
if isinstance(tenor, (int, float)):
return d_rolled
else:
v = [d_rolled + relativedelta(**kwargs(t - 1)) for t in tenor]
if nd_array:
return np.array([pydate_to_TDate(d) for d in v])
else:
return v
def build_table(rows, format_strings, row_format):
def apply_format(row, format_string):
for r, f in zip(row, format_string):
if f is None:
yield r
else:
if callable(f):
yield f(r)
elif isinstance(f, str):
if isinstance(r, tuple):
yield f.format(*r)
else:
yield f.format(r)
return [
row_format.format(*apply_format(row, format_string))
for row, format_string in zip(rows, format_strings)
]
def memoize(f=None, *, hasher=lambda args: (hash(args),)):
if f is None:
return partial(memoize, hasher=hasher)
@wraps(f)
def cached_f(*args, **kwargs):
self = args[0]
key = (f.__name__, *hasher(args))
if key in self._cache:
return self._cache[key]
else:
v = f(*args, **kwargs)
self._cache[key] = v
return v
return cached_f
def to_TDate(arr: np.ndarray):
""" convert an array of numpy datetime to TDate"""
return arr.view("int") + 134774
def get_external_nav(engine, trade_id, value_date=None, trade_type="swaptions"):
if trade_type == "swaptions":
upfront_query = (
"CASE when date < settle_date "
"THEN price * notional/100 * (2 * buysell::integer - 1) "
"ELSE 0."
"END"
)
elif trade_type == "cds":
upfront_query = (
"CASE WHEN date < upfront_settle_date " "THEN upfront ELSE 0. " "END"
)
query = (
"SELECT date, "
"nav, "
f"({upfront_query}) AS upfront FROM external_marks_deriv "
f"LEFT JOIN {trade_type} "
"ON cpty_id = identifier WHERE id=%s "
)
if value_date:
query += "AND date=%s"
r = engine.execute(query, (trade_id, value_date))
try:
date, nav, upfront = next(r)
except StopIteration:
raise MissingDataError(
f"No quote available for {trade_type} {trade_id} on {value_date}"
)
return nav + upfront
else:
query += "ORDER BY DATE"
return pd.read_sql_query(
query, engine, params=(trade_id,), parse_dates=["date"], index_col=["date"]
)
@lru_cache(32)
def get_fx(value_date: datetime.date, currency: str):
if currency == "USD":
return 1.0
if value_date == datetime.date.today():
with init_bbg_session(BBG_IP) as session:
security = currency.upper() + "USD Curncy"
field = "PX_LAST"
ref_data = retrieve_data(session, [security], field)
return ref_data[security][field]
conn = dbconn("dawndb")
with conn.cursor() as c:
c.execute("SELECT * FROM fx where date=%s", (value_date,))
rec = c.fetchone()
r = getattr(rec, currency.lower() + "usd", None)
if r is None:
raise MissingDataError(
f"No {currency.upper()}USD fx rate available for {value_date}"
)
conn.close()
return r
@contextmanager
def run_local(local=True):
saved_local = analytics._local
analytics._local = local
yield
analytics._local = saved_local
|