1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
|
from sqlalchemy import create_engine, MetaData, select, Column, func, bindparam
from collections import defaultdict
import pandas as pd
import numpy as np
from bbg_helpers import init_bbg_session, retrieve_data, BBG_IP
engine = create_engine("postgresql://et_user@debian/ET")
meta = MetaData(bind=engine)
meta.reflect(only=["bloomberg_corp_ref", "bloomberg_corp", "deal_indicative"])
deal_indicative = meta.tables["deal_indicative"]
bloomberg_corp_ref = meta.tables["bloomberg_corp_ref"]
bloomberg_corp = meta.tables["bloomberg_corp"]
s = (
select([Column("cusip"), Column("loanxid")])
.select_from(func.et_latestdealinfo(bindparam("dealname")))
.where(Column("cusip") != None)
)
# we build a dictionary with cusips as keys and values is a set of loanxids mapped to this cusip
result = select([deal_indicative.c.dealname]).execute()
d = defaultdict(set)
for r in result:
result2 = engine.execute(s, dealname=r.dealname)
for t in result2:
d[t.cusip].add(t.loanxid)
clean_mapping = ((cusip, loanxid - {None}) for cusip, loanxid in d.items())
def f(s):
if s:
return "{%s}" % ",".join(s)
else:
return None
clean_mapping = {cusip: f(loanxid) for cusip, loanxid in clean_mapping}
mapping = pd.DataFrame.from_dict(clean_mapping, orient="index")
mapping.index.name = "cusip"
mapping.columns = ["loanxid"]
currentdata = pd.read_sql_query(
"select id_bb_unique, cusip from bloomberg_corp_ref", engine, index_col="cusip"
)
mapping = mapping.ix[mapping.index.difference(currentdata.index)]
with init_bbg_session(BBG_IP) as session:
all_fields = [
"ISSUE_DT",
"LN_ISSUE_STATUS",
"ID_CUSIP",
"ID_BB_UNIQUE",
"SECURITY_TYP",
"AMT_OUTSTANDING",
"PX_LAST",
"LAST_UPDATE_DT",
"ISSUER",
"MATURITY",
"CPN",
"CPN_TYP",
"CPN_FREQ",
"FLT_SPREAD",
"LIBOR_FLOOR",
"LN_CURRENT_MARGIN",
"LN_TRANCHE_SIZE",
"AMT_ISSUED",
"LN_COVENANT_LITE",
"SECOND_LIEN_INDICATOR",
"DEFAULTED",
"DEFAULT_DATE",
"CALLED",
"CALLED_DT",
"PRICING_SOURCE",
"RESET_IDX",
]
securities = ["{0} Corp".format(cusip) for cusip in mapping.index]
df = retrieve_data(session, securities, all_fields)
df = pd.DataFrame.from_dict(df, orient="index")
df.index = df.index.str.slice(0, 9)
df.security = df.index.to_series()
df["loanxid"] = mapping.loanxid
df.dropna(subset=["ID_BB_UNIQUE"], inplace=True)
df.loc[df.LN_TRANCHE_SIZE.isnull(), "LN_TRANCHE_SIZE"] = df[
df.LN_TRANCHE_SIZE.isnull()
].AMT_ISSUED.values
df.drop_duplicates(subset="ID_BB_UNIQUE", inplace=True)
df.set_index("ID_BB_UNIQUE", inplace=True, drop=False)
currentdata.set_index("id_bb_unique", inplace=True)
df = df.ix[df.index.difference(currentdata.index)]
sql_colnames = [c.name for c in bloomberg_corp_ref.columns]
pd_colnames = [
"ID_BB_UNIQUE",
"ID_CUSIP",
"ISSUER",
"MATURITY",
"CPN",
"CPN_TYP",
"CPN_FREQ",
"FLT_SPREAD",
"LIBOR_FLOOR",
"LN_TRANCHE_SIZE",
"LN_COVENANT_LITE",
"SECOND_LIEN_INDICATOR",
"SECURITY_TYP",
"ISSUE_DT",
"DEFAULTED",
"DEFAULT_DATE",
"CALLED",
"CALLED_DT",
"LN_ISSUE_STATUS",
"loanxid",
]
to_insert = df.filter(pd_colnames)
to_insert.rename(
columns={k: v for k, v in zip(pd_colnames, sql_colnames)}, inplace=True
)
to_insert.to_sql("bloomberg_corp_ref", engine, if_exists="append", index=False)
pd_colnames = [
"ID_BB_UNIQUE",
"LAST_UPDATE_DT",
"PX_LAST",
"LN_CURRENT_MARGIN",
"AMT_OUTSTANDING",
"PRICING_SOURCE",
]
sql_colnames = [c.name for c in bloomberg_corp.columns]
to_insert2 = df.filter(pd_colnames)
to_insert2.rename(
columns={k: v for k, v in zip(pd_colnames, sql_colnames)}, inplace=True
)
to_insert2.dropna(subset=["pricingdate"], inplace=True)
to_insert2.set_index(["id_bb_unique", "pricingdate"], inplace=True)
to_insert2.to_sql("bloomberg_corp", engine, if_exists="append", index=True)
|