1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
|
from bbg_helpers import init_bbg_session, retrieve_data, BBG_IP
from sqlalchemy import create_engine
import numpy as np
import pandas as pd
from psycopg2.extensions import register_adapter, AsIs
register_adapter(type(pd.NaT), lambda nat: AsIs(None))
engine = create_engine("postgresql://et_user@debian/ET")
fields_update = [
"LN_ISSUE_STATUS",
"AMT_OUTSTANDING",
"PX_LAST",
"LAST_UPDATE_DT",
"LN_CURRENT_MARGIN",
"DEFAULTED",
"DEFAULT_DATE",
"CALLED",
"CALLED_DT",
"PRICING_SOURCE",
]
# append securities to request
cusips = pd.read_sql_query(
"SELECT id_bb_unique, substring(id_bb_unique from 3) AS cusip "
"FROM bloomberg_corp_ref "
"WHERE (status is Null or status NOT IN ('REFINANCED','RETIRED', 'REPLACED')) "
"AND not called",
engine,
index_col="cusip",
)
securities = ["{0} Corp".format(cusip) for cusip in cusips.index]
with init_bbg_session(BBG_IP) as session:
data = retrieve_data(session, securities, fields_update)
df = pd.DataFrame.from_dict(data, orient="index")
df["security"] = df.index.str.slice(0, 9)
df.set_index(["security"], inplace=True)
df["ID_BB_UNIQUE"] = cusips["id_bb_unique"]
df.reset_index(inplace=True)
to_insert = df[
[
"DEFAULTED",
"DEFAULT_DATE",
"CALLED",
"CALLED_DT",
"LN_ISSUE_STATUS",
"ID_BB_UNIQUE",
]
]
to_insert = to_insert.where(to_insert.notnull(), None)
conn = engine.raw_connection()
with conn.cursor() as c:
c.executemany(
"UPDATE bloomberg_corp_ref SET defaulted = %(DEFAULTED)s, "
"default_date = %(DEFAULT_DATE)s, called= %(CALLED)s, called_date = %(CALLED_DT)s, "
"status = %(LN_ISSUE_STATUS)s WHERE id_bb_unique=%(ID_BB_UNIQUE)s",
to_insert.to_dict("records"),
)
conn.commit()
currentdata = pd.read_sql_query(
"SELECT id_bb_unique, pricingdate from bloomberg_corp",
engine,
parse_dates=["pricingdate"],
index_col=["id_bb_unique", "pricingdate"],
)
# no need to insert empty prices
df.dropna(subset=["PX_LAST", "LAST_UPDATE_DT"], inplace=True)
df.set_index(["ID_BB_UNIQUE", "LAST_UPDATE_DT"], inplace=True)
df = df.ix[df.index.difference(currentdata.index)]
df.index.names = ["ID_BB_UNIQUE", "LAST_UPDATE_DT"]
df.reset_index(inplace=True)
to_insert = df[
[
"ID_BB_UNIQUE",
"LAST_UPDATE_DT",
"PX_LAST",
"LN_CURRENT_MARGIN",
"AMT_OUTSTANDING",
"PRICING_SOURCE",
]
]
to_insert.columns = [
"id_bb_unique",
"pricingdate",
"price",
"loan_margin",
"amount_outstanding",
"source",
]
to_insert.to_sql("bloomberg_corp", engine, if_exists="append", index=False)
|