1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
|
from utils.db import dbconn
from analytics import TrancheBasket
from pandas.tseries.offsets import BDay
import datetime
import logging
import os
import pandas as pd
from pathlib import Path
from yaml import full_load
import argparse
def get_lastdate(conn, index, series, tenor):
sql_str = (
"SELECT (max(date) AT TIME ZONE 'America/New_York')::date + 1 "
"AS date FROM risk_numbers "
"WHERE index=%s and series = %s and tenor = %s"
)
with conn.cursor() as c:
c.execute(sql_str, (index, series, tenor))
date, = c.fetchone()
conn.commit()
return date
def build_sql_str(df):
cols = ",".join(df.columns)
cols_ex_tranche_id = ",".join([c for c in df.columns if c != "tranche_id"])
cols_excluded = ",".join([f"excluded.{c}" for c in df.columns if c != "tranche_id"])
place_holders = ",".join([f"%({c})s" for c in df.columns])
sql_str = (
f"INSERT INTO tranche_risk({cols}) "
f"VALUES({place_holders}) ON CONFLICT (tranche_id) DO "
f"UPDATE SET ({cols_ex_tranche_id}) = ({cols_excluded})"
)
return sql_str
if __name__ == "__main__":
from utils import SerenitasFileHandler
logger = logging.getLogger("tranche_calib")
parser = argparse.ArgumentParser()
parser.add_argument(
"-u",
"--update",
action="store_true",
default=False,
help="Update from the last run date [default %default]",
)
parser.add_argument(
"-c",
"--config",
metavar="config_file",
help="Runs the list of indices provided in CONFIG_FILE",
)
parser.add_argument("-i", "--index", help="Index name we want to run")
parser.add_argument(
"--tenor", default="5yr", help="Tenor we want to run [default '5yr']"
)
parser.add_argument(
"--until", default=pd.Timestamp.now() - BDay(), type=lambda s: pd.Timestamp(s)
)
parser.add_argument("--start_from", default=None, type=lambda s: pd.Timestamp(s))
parser.add_argument(
"-d", "--debug", action="store_true", help="more verbose logging"
)
args = parser.parse_args()
logger.setLevel(logging.DEBUG if args.debug else logging.INFO)
CODE_DIR = Path(os.environ["CODE_DIR"])
if not args.debug:
handler = SerenitasFileHandler(f"calib_tranches_{datetime.date.today()}.log")
else:
handler = logging.StreamHandler()
handler.setFormatter(SerenitasFileHandler._formatter)
logger.addHandler(handler)
start_dates = { # 'hy10': datetime.date(2014, 8, 11),
# 'hy15': datetime.date(2014, 6, 10),
# 'hy17': datetime.date(2013, 1, 1),
"hy19": datetime.date(2013, 2, 1),
"hy21": datetime.date(2013, 10, 4),
"hy23": datetime.date(2014, 10, 16),
"hy25": datetime.date(2015, 10, 1),
"hy27": datetime.date(2016, 10, 4),
"hy29": datetime.date(2017, 10, 3),
"hy31": datetime.date(2018, 10, 2),
"ig9": datetime.date(2013, 1, 1),
"ig19": datetime.date(2013, 5, 1),
"ig21": datetime.date(2013, 9, 26),
"ig23": datetime.date(2014, 10, 14),
"ig25": datetime.date(2015, 9, 22),
"ig27": datetime.date(2016, 9, 27),
"ig29": datetime.date(2017, 9, 26),
"ig31": datetime.date(2018, 9, 25),
"xo22": datetime.date(2014, 10, 20),
"xo24": datetime.date(2015, 9, 28),
"xo26": datetime.date(2016, 9, 27),
"xo28": datetime.date(2017, 9, 28),
"eu9": datetime.date(2014, 9, 15),
"eu19": datetime.date(2013, 4, 3),
"eu21": datetime.date(2014, 3, 27),
"eu22": datetime.date(2014, 10, 22),
"eu24": datetime.date(2015, 9, 23),
"eu26": datetime.date(2016, 9, 27),
"eu28": datetime.date(2017, 9, 28),
"eu30": datetime.date(2018, 9, 25),
"xo30": datetime.date(2018, 9, 25),
}
serenitas_conn = dbconn("serenitasdb")
if args.config is None:
if args.index is None:
raise ValueError("Please provide an index to run")
config = {"runs": [(args.index, args.tenor)]}
else:
with (CODE_DIR / "etc" / args.config).open("r") as fh:
config = full_load(fh)
for index, tenor in config["runs"]:
begin_date = None
index, series = index[:2].upper(), int(index[2:])
if args.start_from is not None:
begin_date = args.start_from
if args.update:
begin_date = get_lastdate(serenitas_conn, index, series, tenor)
if not args.update and begin_date is None:
try:
begin_date = start_dates[f"{index.lower()}{series}"]
except KeyError:
print(index, series)
continue
dr = pd.bdate_range(begin_date, args.until)
if dr.empty:
continue
logger.info(f"calibrating {index}, {series}, {tenor}")
tranche_index = None
data = {}
for d in dr:
logger.debug(f"calibrating for {d.date()}")
try:
if tranche_index is None:
tranche_index = TrancheBasket(
index, series, tenor, value_date=d.date()
)
else:
tranche_index.value_date = d.date()
except (RuntimeError, ValueError) as e:
logger.error(e)
continue
try:
tranche_index.tweak()
except ValueError as e:
logger.error(e)
break
try:
tranche_index.build_skew()
except ValueError as e:
logger.error(e)
continue
df = pd.concat(
[
tranche_index.tranche_deltas(),
tranche_index.tranche_fwd_deltas(),
tranche_index.tranche_durations(),
tranche_index.tranche_EL(),
tranche_index.tranche_spreads(),
],
axis=1,
)
try:
df["theta"] = tranche_index.tranche_thetas(method="TLP")
except ValueError:
df["theta"] = None
df["index_duration"], df["index_expected_loss"], df[
"index_price"
] = tranche_index.index_pv()
df["index_expected_loss"] *= -1
df["index_duration"] -= tranche_index.accrued()
df["index_basis"] = tranche_index.tweaks[0]
df["index_theta"] = tranche_index.theta()[tenor]
df["tranche_id"] = tranche_index.tranche_quotes.id.values
df["corr_at_detach"] = tranche_index.rho[1:]
df["corr01"] = tranche_index.tranche_corr01()
del df["fwd_gamma"]
data[d] = df
if data:
data = pd.concat(data)
sql_str = build_sql_str(data)
with serenitas_conn.cursor() as c:
c.executemany(sql_str, data.to_dict(orient="record"))
serenitas_conn.commit()
|