aboutsummaryrefslogtreecommitdiffstats
path: root/python/collateral/__main__.py
blob: fa12cf75efbaa528a16a12d1ef44b0afe8764dcc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import pandas as pd

from exchange import ExchangeMessage
from importlib import import_module
from utils import SerenitasFileHandler
from utils.db import dawn_engine, dbconn

from .common import get_bilateral_trades, send_email
from pandas.tseries.offsets import BDay

import argparse
import datetime
import logging

fh = SerenitasFileHandler("collateral_calc.log")
logger = logging.getLogger("collateral_calc")
logger.addHandler(fh)
logger.setLevel(logging.WARNING)

parser = argparse.ArgumentParser()
parser.add_argument(
    "workdate",
    nargs="?",
    type=datetime.datetime.fromisoformat,
    default=datetime.date.today(),
)
parser.add_argument(
    "-d", "--download", action="store_true", help="download counterparty reports"
)
parser.add_argument(
    "-s", "--send-email", action="store_true", help="send email to Globeop"
)
args = parser.parse_args()
counterparties = ["citi", "baml_isda", "ms", "gs", "bnp", "baml_fcm", "wells", "cs"]
if args.download:
    em = ExchangeMessage()
    for cp in counterparties:
        cp_mod = import_module(f".{cp}", "collateral")
        for fund in ("Serenitas", "Brinker", "BowdSt"):
            cp_mod.download_files(em, fund=fund)

args.workdate -= BDay()

cp_dict = {
    "Serenitas": {
        "fcms": ("baml_fcm", "wells"),
        "isda_cps": ("citi", "baml_isda", "ms", "gs", "bnp", "cs"),
    },
    "Brinker": {"fcms": (), "isda_cps": ("ms", "gs")},
    "BowdSt": {"fcms": (), "isda_cps": ("ms", "bnp")},
}


def run_collateral(cp, fund, positions, workdate, engine):
    cp_mod = import_module("." + cp, "collateral")
    lookback = 0
    while lookback < 2:
        try:
            return cp_mod.collateral(
                workdate - BDay(lookback), positions, engine=engine, fund=fund
            )
        except FileNotFoundError as e:
            logger.info(e)
            lookback += 1
        except ValueError as e:
            logger.error(e)
            break
        else:
            break


df = {}
fcm_mapping = {"baml_fcm": "BAML", "wells": "WF"}
fund_mapping = {"Serenitas": "SERCGMAST", "Brinker": "BRINKER", "BowdSt": "BOWDST"}

for fund in ("Serenitas", "Brinker", "BowdSt"):
    bilat_positions = get_bilateral_trades(
        args.workdate, fund_mapping[fund], dawn_engine
    )
    for fcm in cp_dict[fund]["fcms"]:
        positions = pd.read_sql_query(
            "SELECT security_id, security_desc, maturity, "
            "folder, notional, currency "
            "FROM  list_cds_positions_by_strat_fcm(%s, %s)",
            dawn_engine,
            params=(args.workdate.date(), fcm_mapping[fcm]),
            index_col=["security_id", "maturity"],
        )
        df[(fund, fcm.upper())] = run_collateral(
            fcm, fund, positions, args.workdate, dawn_engine
        )
    for cp in cp_dict[fund]["isda_cps"]:
        df[(fund, cp.upper())] = run_collateral(
            cp, fund, bilat_positions, args.workdate, dawn_engine
        )


df = pd.concat(df, names=["fund", "broker", "strategy"]).reset_index()
df.strategy = df.strategy.str.replace("^(M_|SER_)?", "", 1)
df["fund"] = df.fund.map(
    {"Serenitas": "SERCGMAST", "Brinker": "BRINKER", "BowdSt": "BOWDST"}
)

df = df[["date", "broker", "strategy", "Amount", "Currency", "fund"]]
conn = dbconn("dawndb")
sql_str = (
    "INSERT INTO strategy_im VALUES(%s, %s, %s, %s, %s, %s) "
    "ON CONFLICT (date, strategy, broker, fund) DO UPDATE "
    "SET currency=EXCLUDED.currency, amount=EXCLUDED.amount"
)
with conn.cursor() as c:
    for t in df.itertuples(index=False):
        c.execute(sql_str, t)
conn.commit()
conn.close()

if args.send_email:
    send_email(args.workdate, df[df.fund == "SERCGMAST"].drop("fund", axis=1))