1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
|
from . import DAILY_DIR
from serenitas.analytics.utils import get_fx
from bs4 import BeautifulSoup
from io import BytesIO
from pandas.tseries.offsets import BDay
import logging
import pandas as pd
import pathlib
import requests
import xlrd
import zipfile
from urllib.parse import urlsplit, parse_qs, urlunsplit, urljoin
from xlrd import open_workbook, xldate_as_tuple
logger = logging.getLogger(__name__)
def download_from_secure_id(
secure_id: str,
brand: str,
path: pathlib.Path,
base_url="https://secmail.bankofamerica.com",
):
password = {
"ghorel@lmcg.com": "v4vdMvH9Qe9t",
"nyops@lmcg.com": "Serenitas21",
}
payload = {}
with requests.Session() as session:
r = session.get(
urljoin(base_url, "formpostdir/securereader"),
params={"id": secure_id, "brand": brand},
verify="secmail-bankofamerica-com-chain.pem",
)
soup = BeautifulSoup(r.content, features="lxml")
form = soup.find(id="dialog")
if "messagenotfound" in form["action"]:
raise ValueError("message not found")
for inp in form.find_all("input"):
payload[inp["name"]] = inp["value"]
payload["dialog:password"] = password[payload["dialog:username"]]
r = session.post(base_url + form["action"], data=payload)
soup = BeautifulSoup(r.content, features="lxml")
form = soup.find(id="readTB")
payload = {
"readTB": "readTB",
"readTB:downloadZipButton": "readTB:downloadZipButton",
}
for inp in form.find_all("input"):
if "ViewState" in inp["name"]:
payload["javax.faces.ViewState"] = inp["value"]
r = session.post(urljoin(base_url, "securereader/read.jsf"), data=payload)
if r.headers["content-type"] == "application/octet-stream":
with zipfile.ZipFile(BytesIO(r.content)) as z:
for f in z.namelist():
if not f.endswith("html") and not (path / f).exists():
z.extract(f, path=path)
paths = {
"Serenitas": ["NYops", "Margin Calls Baml"],
"BowdSt": ["BowdoinOps", "Margin BoA"],
"Selene": ["SeleneOps", "Margin BoA"],
}
def read_secure_message(msg, dest, logger):
soup = BeautifulSoup(msg.body, features="lxml")
a = soup.find("a")
url = urlsplit(a["href"])
query = parse_qs(url.query)
base_url = urlunsplit(url[:2] + ("",) * 3)
try:
download_from_secure_id(query["id"][0], query["brand"][0], dest, base_url)
except ValueError as e:
if logger:
logger.error(e)
def download_files(em, d=None, count=20, *, fund="Serenitas", **kwargs):
DATA_DIR = DAILY_DIR / fund / "BoA_reports"
if fund not in paths:
return
emails = em.get_msgs(path=paths[fund], count=count)
for msg in emails:
match msg.sender.name:
case "us_otc_client_valuation@baml.com" | "us_otc_client_valuation@bofa.com" if msg.body.body_type == "HTML":
read_secure_message(msg, DATA_DIR, logger)
case "us_otc_client_valuation@baml.com" | "us_otc_client_valuation@bofa.com" | "bank_of_america_collateral_operations@bankofamerica.com":
for attach in msg.attachments:
if attach.name.endswith("xls") or attach.name.endswith("pdf"):
p = DATA_DIR / attach.name
if not p.exists():
p.write_bytes(attach.content)
case _:
continue
def load_excel_old(fname):
wb = open_workbook(fname)
s = wb.sheet_by_index(0)
headers = s.row_values(6, 0)
i = 7
rows = []
while s.cell(i, 0).value != "":
r = []
for e in s.row_slice(i, 0):
if e.ctype == xlrd.XL_CELL_DATE:
r.append(pd.Timestamp(*xldate_as_tuple(e.value, wb.datemode)))
else:
r.append(e.value)
rows.append(r)
i += 1
df = pd.DataFrame.from_records(rows, columns=headers)
for col in ["Original Notional", "Notional"]:
df[col] = pd.to_numeric(df[col].str.replace(",", ""))
return df
def load_excel(fname):
wb = open_workbook(fname)
s = wb.sheet_by_index(0)
headers = s.row_values(13, 0)
i = 19
rows = []
while s.cell(i, 0).ctype != xlrd.XL_CELL_DATE:
content = s.cell(i, 0).value
if content.startswith("NOP"):
break
if (
content == ""
or content.startswith("Credit")
or content.startswith("FX")
or content.startswith("Unspecified")
or content.startswith("Equity - Option")
):
i += 1
continue
r = []
for e in s.row_slice(i, 0):
if e.ctype == xlrd.XL_CELL_DATE:
r.append(pd.Timestamp(*xldate_as_tuple(e.value, wb.datemode)))
else:
r.append(e.value)
rows.append(r)
i += 1
df = pd.DataFrame.from_records(rows, columns=headers)
if not df.empty:
df["fx"] = df[["Market Value Date", "Ccy1"]].apply(lambda x: get_fx(*x), axis=1)
df["Market Value Amount"] /= df["fx"]
df = df.rename(
columns={
"Contract ID ": "Trade ID",
"Market Value Amount": "local_nav",
"Market Value Amount in CA Ccy": "base_nav",
"Trade Date ": "Trade Date",
"Cpty Independent Amount": "ia",
}
)
df[["local_nav", "base_nav"]] *= -1.0
return df
def collateral(d, dawn_trades, *, fund="Serenitas", **kwargs):
match fund:
case "Serenitas":
tag = "TSLP"
case "BowdSt":
tag = "TLLC"
case "Selene":
tag = "INC"
report_date = d + BDay()
REPORTS_DIR = DAILY_DIR / fund / "BoA_reports"
try:
fname = next(
REPORTS_DIR.glob(f"Collat_LMCG_INVESTMEN{tag}_CSA_{report_date:%m%d%Y}_*")
)
except StopIteration:
raise ValueError(f"no collateral data for date {report_date}")
df = pd.read_excel(fname, skiprows=6, skipfooter=6)
if df.empty:
collateral = 0
logger.warning("empty collateral file")
else:
df = df.drop(0, axis=0)
try:
collateral = float(df.Notional)
except TypeError:
collateral = df.Notional.sum()
try:
fname = next(
REPORTS_DIR.glob(f"301__LMCG_INVESTMEN{tag}_CSA_{report_date:%m%d%Y}_*")
)
except StopIteration:
raise ValueError(f"no trade-level data for date {report_date}")
df = load_excel(fname)
df = df[["Trade ID", "base_nav", "ia"]]
df = df.merge(
dawn_trades.drop("ia", axis=1),
how="left",
left_on="Trade ID",
right_on="cpty_id",
)
missing_ids = df.loc[df.cpty_id.isnull(), "Trade ID"]
if not missing_ids.empty:
raise ValueError(f"{missing_ids.tolist()} not in the database")
df = df[["folder", "base_nav", "ia"]]
# we put all the FX collateral in TCSH for now
df.loc[df.folder == "M_CSH_CASH", "folder"] = "TCSH"
df = df.groupby("folder").sum()
df = (df["ia"] - df["base_nav"]).to_frame(name="Amount")
df["Currency"] = "USD"
df = df.reset_index()
df.columns = ["Strategy", "Amount", "Currency"]
df.Amount *= -1
df.loc[df.Strategy == "M_CSH_CASH", "Strategy"] = "TCSH"
df.loc[len(df.index)] = ["M_CSH_CASH", -collateral - df.Amount.sum(), "USD"]
df["date"] = d
return df.set_index("Strategy")
|