aboutsummaryrefslogtreecommitdiffstats
path: root/python/collateral/citi.py
blob: e9acfa880846755a07c2aa3e0eec6c646638d455 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import pandas as pd
from . import DAILY_DIR
from .common import load_pdf, get_col, next_business_day, parse_num


def load_file(d):
    try:
        fname = next(
            (DAILY_DIR / "CITI_reports").glob(
                f"262966_Portfolio_{d.strftime('%Y%m%d')}*"
            )
        )
    except StopIteration:
        raise FileNotFoundError(f"CITI file not found for date {d}")
    return pd.read_excel(fname, skiprows=6, skipfooter=2)


def download_files(em, count=20, **kwargs):
    emails = em.get_msgs(
        path=["NYops", "Margin Calls Citi"], count=count, subject__startswith="262966"
    )
    DATA_DIR = DAILY_DIR / "CITI_reports"
    for msg in emails:
        for attach in msg.attachments:
            fname = attach.name
            p = DATA_DIR / fname
            if not p.exists():
                p.write_bytes(attach.content)


def get_df(l, col1, col2, col3):
    df = pd.DataFrame(
        {"amount": get_col(l, *col2), "currency": get_col(l, *col3)},
        index=get_col(l, *col1),
    )
    df.amount = df.amount.apply(parse_num)
    df.index = df.index.str.lstrip()
    return df


def get_total_collateral(d):
    try:
        fname = next(
            (DAILY_DIR / "CITI_reports").glob(
                f"262966_MarginNotice_{d.strftime('%Y%m%d')}_*.pdf"
            )
        )
    except StopIteration:
        raise FileNotFoundError(f"CITI file not found for date {d.date()}")
    l = load_pdf(fname)
    col1 = (370, 500, 70, 250)
    col2 = (370, 500, 300, 530)
    col3 = (370, 500, 530, 600)
    variation_margin = get_df(l, col1, col2, col3)
    anchor = next(c for c in l if c.text == "Non Regulatory Initial Margin")
    top = int(anchor["top"]) + 10
    bottom = top + 160
    col1 = (top, bottom, 70, 320)
    col2 = (top, bottom, 320, 530)
    col3 = (top, bottom, 530, 600)
    initial_margin = get_df(l, col1, col2, col3)

    return (
        variation_margin.loc["VM Total Collateral", "amount"],
        initial_margin.loc["Non Reg IM Total Collateral", "amount"],
        -variation_margin.loc["Regulatory VM Requirement", "amount"],
        -initial_margin.loc["Non Reg IM Requirement Due Customer", "amount"],
    )


def collateral(d, dawn_trades, **kwargs):
    df = load_file(next_business_day(d))
    collat = sum(get_total_collateral(d)[:2])
    df = df[["Operations File", "Market Value", "BasicAmt"]].dropna(
        subset=["Operations File"]
    )  # missing Operations File means assignment usually
    # but could be a fee
    df = df.merge(
        dawn_trades, how="left", left_on="Operations File", right_on="cpty_id"
    )
    missing_ids = df.loc[df.cpty_id.isnull(), "Operations File"]
    if not missing_ids.empty:
        raise ValueError(f"{missing_ids.tolist()} not in the database")
    df = df.groupby("folder").sum()
    df = df[["Market Value", "BasicAmt"]].sum(axis=1).to_frame(name="Amount")
    df["Currency"] = "USD"
    df = df.reset_index()
    df.columns = ["Strategy", "Amount", "Currency"]
    df.Amount *= -1
    df.loc[len(df.index)] = ["M_CSH_CASH", collat - df.Amount.sum(), "USD"]
    df["date"] = d
    return df.set_index("Strategy")