1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
|
import datetime
import logging
import subprocess
from bs4 import BeautifulSoup
import pandas as pd
from exchangelib import HTMLBody
from sqlalchemy.engine import Engine
logger = logging.getLogger(__name__)
CASH_STRATEGY_MAPPING = {
"COCSH": ["IGREC", "IGPAYER", "HYPAYER", "HYREC", "HYOPTDEL", "IGOPTDEL"],
"IRDEVCSH": ["STEEP", "FLAT"],
"TCSH": [
"IGMEZ",
"IGSNR",
"IGEQY",
"HYMEZ",
"HYEQY",
"BSPK",
"XOMEZ",
"IGINX",
"HYINX",
"XOINX",
"EUMEZ",
"EUINX",
],
"MBSCDSCSH": ["HEDGE_MBS", "MBSCDS"],
"MACCDSCSH": ["HEDGE_MAC"],
"SER_ITRXCVCSH": ["SER_ITRXCURVE"],
"SER_IGCVECSH": ["SER_IGCURVE"],
"CLOCDSCSH": ["HEDGE_CLO"],
}
STRATEGY_CASH_MAPPING = {e: k for k, v in CASH_STRATEGY_MAPPING.items() for e in v}
def compare_notionals(df: pd.DataFrame, positions: pd.DataFrame, fcm: str) -> None:
check_notionals = (
positions.groupby(level=["security_id", "maturity"])[["notional"]]
.sum()
.join(df["NOTIONAL"], how="left")
)
diff_notionals = check_notionals[
(check_notionals.notional != check_notionals.NOTIONAL)
& (check_notionals.notional != 0.0)
]
if not diff_notionals.empty:
logger.error(f"Database and {fcm} FCM know different notionals")
for t in diff_notionals.itertuples():
logger.error(
f"{t.Index[0]}\t{t.Index[1].date()}\t{t.notional}\t{t.NOTIONAL}"
)
def get_bilateral_trades(d: datetime.date, fund: str, engine: Engine) -> pd.DataFrame:
df_cds = pd.read_sql_query(
"SELECT cpty_id, folder, initial_margin_percentage * abs(notional) / 100 as IA "
"FROM list_cds(%s::date, %s) "
"WHERE cpty_id IS NOT NULL",
engine,
params=(d, fund),
)
df_swaptions = pd.read_sql_query(
"SELECT cpty_id, folder, initial_margin_percentage * notional / 100 AS IA "
"FROM swaptions "
"WHERE cpty_id IS NOT NULL "
"AND trade_date <= %s AND fund=%s",
engine,
params=(d, fund),
)
df_caps = pd.read_sql_query(
"SELECT cpty_id, folder, initial_margin_percentage * amount / 100 AS IA "
"FROM capfloors "
"WHERE cpty_id IS NOT NULL "
"AND trade_date <= %s AND fund=%s",
engine,
params=(d, fund),
)
df = pd.concat([df_cds, df_swaptions, df_caps])
df = df.replace({"folder": STRATEGY_CASH_MAPPING})
return df
def send_email(d: datetime.date, df: pd.DataFrame) -> None:
from exchange import ExchangeMessage
pd.set_option("display.float_format", "{:.2f}".format)
df = df.drop("date", axis=1).set_index("broker")
cp_mapping = {
"CITI": "Citi",
"MS": "Morgan Stanley",
"GS": "Goldman Sachs",
"BAML_FCM": "Baml FCM",
"BAML_ISDA": "Baml OTC",
"WELLS": "Wells Fargo",
"BNP": "BNP Paribas",
"CS": "Credit Suisse",
}
html = "<html><body>"
for cp, df in df.groupby(level="broker"):
name = cp_mapping[cp]
html += f"<h3> At {name}:</h3>\n{df.loc[cp].to_html(index=False)}"
em = ExchangeMessage()
em.send_email(
f"IAM booking {d:%Y-%m-%d}",
HTMLBody(html),
["serenitas.otc@sscinc.com"],
["nyops@lmcg.com"],
)
def load_pdf(file_path):
proc = subprocess.run(
["pdftohtml", "-xml", "-stdout", "-i", file_path.as_posix()],
capture_output=True,
)
soup = BeautifulSoup(proc.stdout, features="lxml")
l = soup.findAll("text")
l = sorted(l, key=lambda x: (int(x["top"]), int(x["left"])))
return l
def get_col(l, top, bottom, left, right):
return [
c.text
for c in l
if int(c["left"]) >= left
and int(c["left"]) < right
and int(c["top"]) >= top
and int(c["top"]) < bottom
]
def prev_business_day(d: datetime.date):
if (offset := d.weekday() - 4) > 0:
return d - datetime.timedelta(days=offset)
elif offset == -4:
return d - datetime.timedelta(days=3)
else:
return d - datetime.timedelta(days=1)
def next_business_day(d: datetime.date):
if (offset := 7 - d.weekday()) > 3:
return d + datetime.timedelta(days=1)
else:
return d + datetime.timedelta(days=offset)
|