aboutsummaryrefslogtreecommitdiffstats
path: root/python/collateral/common.py
blob: e278c2cbf07bd2ae887e3d55adce397edca4fc77 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import datetime
import logging
import subprocess
from bs4 import BeautifulSoup
import pandas as pd
from exchangelib import HTMLBody
from sqlalchemy.engine import Engine

logger = logging.getLogger(__name__)

CASH_STRATEGY_MAPPING = {
    "COCSH": ["IGREC", "IGPAYER", "HYPAYER", "HYREC", "HYOPTDEL", "IGOPTDEL"],
    "IRDEVCSH": ["STEEP", "FLAT"],
    "TCSH": [
        "IGMEZ",
        "IGSNR",
        "IGEQY",
        "HYMEZ",
        "HYEQY",
        "HYSNR",
        "BSPK",
        "XOMEZ",
        "XOEQY",
        "IGINX",
        "HYINX",
        "XOINX",
        "EUMEZ",
        "EUINX",
    ],
    "MBSCDSCSH": ["HEDGE_MBS", "MBSCDS"],
    "MACCDSCSH": ["HEDGE_MAC"],
    "CVECSH": ["SER_ITRXCURVE", "SER_IGCURVE", "SER_HYCURVE", "XCURVE"],
    "CLOCDSCSH": ["HEDGE_CLO"],
}

STRATEGY_CASH_MAPPING = {e: k for k, v in CASH_STRATEGY_MAPPING.items() for e in v}


def compare_notionals(df: pd.DataFrame, positions: pd.DataFrame, fcm: str) -> None:
    check_notionals = (
        positions.groupby(level=["security_id", "maturity"])[["notional"]]
        .sum()
        .join(df["NOTIONAL"], how="left")
    )
    diff_notionals = check_notionals[
        (check_notionals.notional != check_notionals.NOTIONAL)
        & (check_notionals.notional != 0.0)
    ]
    if not diff_notionals.empty:

        logger.error(f"Database and {fcm} FCM know different notionals")
        for t in diff_notionals.itertuples():
            logger.error(
                f"{t.Index[0]}\t{t.Index[1].date()}\t{t.notional}\t{t.NOTIONAL}"
            )


def get_bilateral_trades(d: datetime.date, fund: str, engine: Engine) -> pd.DataFrame:
    df_cds = pd.read_sql_query(
        "SELECT cpty_id, folder, initial_margin_percentage * abs(notional) / 100 as IA "
        "FROM list_cds(%s::date, %s) "
        "WHERE cp_code IS NOT NULL",  # that way we get all tranches + the ABS_CDS
        engine,
        params=(d, fund),
    )
    df_swaptions = pd.read_sql_query(
        "SELECT cpty_id, folder, initial_margin_percentage * notional / 100 AS IA "
        "FROM swaptions "
        "WHERE cpty_id IS NOT NULL "
        "AND trade_date <= %s AND fund=%s",
        engine,
        params=(d, fund),
    )
    df_caps = pd.read_sql_query(
        "SELECT cpty_id, folder, initial_margin_percentage * amount / 100 AS IA "
        "FROM capfloors "
        "WHERE cpty_id IS NOT NULL "
        "AND trade_date <= %s AND fund=%s",
        engine,
        params=(d, fund),
    )
    df = pd.concat([df_cds, df_swaptions, df_caps])
    df = df.replace({"folder": STRATEGY_CASH_MAPPING})
    return df


def send_email(d: datetime.date, df: pd.DataFrame) -> None:
    from serenitas.utils.exchange import ExchangeMessage

    pd.set_option("display.float_format", "{:.2f}".format)
    df = df.drop("date", axis=1).set_index("broker")
    cp_mapping = {
        "CITI": "Citi",
        "MS": "Morgan Stanley",
        "GS": "Goldman Sachs",
        "BAML_FCM": "Baml FCM",
        "BAML_ISDA": "Baml OTC",
        "WELLS": "Wells Fargo",
        "BNP": "BNP Paribas",
        "CS": "Credit Suisse",
        "JPM": "JP Morgan",
    }
    html = "<html><body>"
    for cp, df in df.groupby(level="broker"):
        name = cp_mapping[cp]
        try:
            html += f"<h3> At {name}:</h3>\n{df.loc[cp].to_html(index=False)}"
        except AttributeError:
            html += (
                f"<h3> At {name}:</h3>\n{df.loc[cp].to_frame().T.to_html(index=False)}"
            )
    em = ExchangeMessage()
    em.send_email(
        f"IAM booking {d:%Y-%m-%d}",
        HTMLBody(html),
        ["serenitas.otc@sscinc.com"],
        ["nyops@lmcg.com"],
    )


def load_pdf(file_path, pages=False):
    proc = subprocess.run(
        ["pdftohtml", "-xml", "-stdout", "-i", file_path.as_posix()],
        capture_output=True,
    )
    soup = BeautifulSoup(proc.stdout, features="lxml")
    if pages:
        r = []
        for page in soup.findAll("page"):
            l = page.findAll("text")
            r.append(sorted(l, key=lambda x: (int(x["top"]), int(x["left"]))))
        return r
    else:
        l = soup.findAll("text")
        l = sorted(l, key=lambda x: (int(x["top"]), int(x["left"])))
        return l


def get_col(l, top, bottom, left, right):
    return [
        c.text
        for c in l
        if int(c["left"]) >= left
        and int(c["left"]) < right
        and int(c["top"]) >= top
        and int(c["top"]) < bottom
    ]


def prev_business_day(d: datetime.date):
    if (offset := d.weekday() - 4) > 0:
        return d - datetime.timedelta(days=offset)
    elif offset == -4:
        return d - datetime.timedelta(days=3)
    else:
        return d - datetime.timedelta(days=1)


def next_business_day(d: datetime.date):
    if (offset := 7 - d.weekday()) > 3:
        return d + datetime.timedelta(days=1)
    else:
        return d + datetime.timedelta(days=offset)


def parse_num(s):
    s = s.replace(",", "")
    if s[0] == "(":
        return -float(s[1:-1])
    else:
        return float(s)