aboutsummaryrefslogtreecommitdiffstats
path: root/python/collateral/common.py
blob: 6abf0233279891203b27e7955323914085354a63 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import datetime
import math
import logging
import subprocess
from bs4 import BeautifulSoup
import pandas as pd
from exchangelib import HTMLBody
from io import StringIO
from sqlalchemy.engine import Engine

logger = logging.getLogger(__name__)

CASH_STRATEGY_MAPPING = {
    "COCSH": ["IGREC", "IGPAYER", "HYPAYER", "HYREC", "HYOPTDEL", "IGOPTDEL", "VOLRV"],
    "IRDEVCSH": ["DV01", "STEEP", "FLAT"],
    "TCSH": [
        "IGMEZ",
        "IGSNR",
        "IGEQY",
        "HYMEZ",
        "HYEQY",
        "HYSNR",
        "BSPK",
        "XOMEZ",
        "XOEQY",
        "IGINX",
        "HYINX",
        "XOINX",
        "EUMEZ",
        "EUINX",
    ],
    "MBSCDSCSH": ["HEDGE_MBS", "MBSCDS"],
    "MACCDSCSH": ["HEDGE_MAC", "CASH_BASIS", "SOFR"],
    "CVECSH": ["SER_ITRXCURVE", "SER_IGCURVE", "SER_HYCURVE", "XCURVE"],
    "CLOCDSCSH": ["HEDGE_CLO", "M_CLO_BB20"],
    "M_CSH_CASH": [
        "CRT_LD",
        "CRT_LD_JNR",
        "CRT_SD",
        "MTG_FP",
        "MTG_LMG",
        "M_MTG_FP",
        "M_MTG_LMG",
    ],
}

STRATEGY_CASH_MAPPING = {e: k for k, v in CASH_STRATEGY_MAPPING.items() for e in v}


def compare_notionals(
    df: pd.DataFrame, positions: pd.DataFrame, fcm: str, fund: str
) -> None:
    check_notionals = (
        positions.groupby(level=["security_id", "maturity"])[["notional"]]
        .sum()
        .join(df["NOTIONAL"], how="left")
    )
    diff_notionals = check_notionals[
        (check_notionals.notional != check_notionals.NOTIONAL)
        & (check_notionals.notional != 0.0)
    ]
    if not diff_notionals.empty:

        logger.error(f"Database and {fcm} FCM at {fund} know different notionals")
        for t in diff_notionals.itertuples():
            logger.error(
                f"{t.Index[0]}\t{t.Index[1]:%Y-%m-%d}\t{t.notional}\t{t.NOTIONAL}"
            )


def compare_notionals_rates(
    df: pd.DataFrame, positions: pd.DataFrame, fcm: str
) -> None:
    check_notionals = positions.join(df["NOTIONAL"], how="left")
    diff_notionals = check_notionals[
        (check_notionals.notional != check_notionals.NOTIONAL)
        & (check_notionals.notional != 0.0)
    ]
    if not diff_notionals.empty:

        logger.error(f"Database and {fcm} FCM know different notionals")
        for t in diff_notionals.itertuples():
            if hasattr(t, "effective_date"):
                msg = f"{t.Index[0]}\t{t.effective_date:%Y-%m-%d}\t{t.notional}\t{t.NOTIONAL}"
            else:
                msg = f"{t.Index[0]}\t{t.Index[1]:%Y-%m-%d}\t{t.notional}\t{t.NOTIONAL}"
            logger.error(msg)


def get_bilateral_trades(d: datetime.date, fund: str, engine: Engine) -> pd.DataFrame:
    df_cds = pd.read_sql_query(
        "SELECT cpty_id, folder, initial_margin_percentage * abs(notional) / 100 as IA "
        "FROM list_cds2(%s::date, %s) "
        "WHERE orig_attach IS NOT NULL or cpty_id='6SIT0'",  # that way we get all tranches + the ABS_CDS
        engine,
        params=(d, fund),
    )
    df_swaptions = pd.read_sql_query(
        "SELECT cpty_id, folder, initial_margin_percentage * abs(notional) / 100 AS IA "
        "FROM list_swaptions(%s::date, %s) ",
        engine,
        params=(d, fund),
    )
    df_caps = pd.read_sql_query(
        "SELECT cpty_id, folder, initial_margin_percentage * amount / 100 AS IA "
        "FROM capfloors "
        "WHERE cpty_id IS NOT NULL "
        "AND trade_date <= %s AND fund=%s",
        engine,
        params=(d, fund),
    )
    df_forwards = pd.read_sql_query(
        "SELECT cpty_id, folder, ia FROM ("
        "  SELECT cpty_id, folder, initial_margin_percentage * buy_amount / 100 AS ia,"
        "         trade_date, settle_date, fund FROM spots"
        "  UNION"
        "  SELECT UNNEST(ARRAY[near_cpty_id, far_cpty_id]) AS cpty_id, folder, 0.0 AS ia,"
        "         trade_date, unnest(ARRAY[near_settle_date, far_settle_date]) AS settle_date,"
        "         fund FROM fx_swaps"
        ") a "
        "WHERE cpty_id IS NOT NULL AND trade_date <=%s AND fund=%s AND settle_date >=%s",
        engine,
        params=(d, fund, d),
    )
    df_trs = pd.read_sql_query(
        "SELECT cpty_id, folder, initial_margin_percentage * notional/100 AS ia FROM trs "
        "WHERE cpty_id IS NOT NULL AND trade_date <= %s AND fund=%s",
        engine,
        params=(d, fund),
    )
    df_options = pd.read_sql_query(
        "SELECT cpty_id, folder, initial_margin AS ia FROM equityoptions "
        "WHERE cpty_id IS NOT NULL AND trade_date <= %s AND fund=%s",
        engine,
        params=(d, fund),
    )
    df_terminations = pd.read_sql_query(
        "SELECT cpty_id, folder, 0 as ia FROM termination_collateral_mapping "
        "WHERE termination_date <= %s AND fund=%s",
        engine,
        params=(d, fund),
    )
    df = pd.concat(
        [
            df_cds,
            df_swaptions,
            df_caps,
            df_forwards,
            df_trs,
            df_options,
            df_terminations,
        ]
    )
    df = df.replace({"folder": STRATEGY_CASH_MAPPING})
    return df


def send_email(d: datetime.date, df: pd.DataFrame) -> None:
    from serenitas.utils.exchange import ExchangeMessage

    pd.set_option("display.float_format", "{:.2f}".format)
    df = df.drop("date", axis=1).set_index("broker")
    cp_mapping = {
        "CITI": "Citi",
        "MS": "Morgan Stanley",
        "GS": "Goldman Sachs",
        "BAML_FCM": "Baml FCM",
        "BAML_ISDA": "Baml OTC",
        "WELLS": "Wells Fargo",
        "BNP": "BNP Paribas",
        "CS": "Credit Suisse",
        "JPM": "JP Morgan",
        "BARCLAYS": "Barclays",
    }
    buf = StringIO()
    buf.write("<html><body>\n")
    for cp, df in df.groupby(level="broker"):
        name = cp_mapping[cp]
        buf.write(f"<h3> At {name}:</h3>\n")
        try:
            df.loc[cp].to_html(buf, index=False)
        except AttributeError:
            df.loc[cp].to_frame().T.to_html(buf, index=False)
    buf.write("</body/></html>")
    em = ExchangeMessage()
    em.send_email(
        f"IAM booking {d:%Y-%m-%d}",
        HTMLBody(buf.getvalue()),
        ["serenitas.otc@sscinc.com"],
        ["nyops@lmcg.com"],
        reply_to=("nyops@lmcg.com",),
    )


def load_pdf(file_path, pages=False):
    proc = subprocess.run(
        ["pdftohtml", "-xml", "-stdout", "-i", file_path.as_posix()],
        capture_output=True,
    )
    soup = BeautifulSoup(proc.stdout, features="lxml")
    if pages:
        r = []
        for page in soup.findAll("page"):
            l = page.findAll("text")
            r.append(sorted(l, key=lambda x: (int(x["top"]), int(x["left"]))))
        return r
    else:
        l = soup.findAll("text")
        l = sorted(l, key=lambda x: (int(x["top"]), int(x["left"])))
        return l


def get_col(l, top, bottom, left, right, bbox=False):
    actual_left, actual_right = math.inf, -math.inf
    r = []
    for c in l:
        if (
            int(c["left"]) >= left
            and int(c["left"]) + int(c["width"]) < right
            and int(c["top"]) >= top
            and int(c["top"]) + int(c["height"]) < bottom
        ):
            r.append(c.text)
            actual_left = min(int(c["left"]), actual_left)
            actual_right = max(int(c["left"]) + int(c["width"]), actual_right)
    if bbox:
        return r, (actual_left, actual_right)
    else:
        return r


def prev_business_day(d: datetime.date):
    if (offset := d.weekday() - 4) > 0:
        return d - datetime.timedelta(days=offset)
    elif offset == -4:
        return d - datetime.timedelta(days=3)
    else:
        return d - datetime.timedelta(days=1)


def next_business_day(d: datetime.date):
    if (offset := 7 - d.weekday()) > 3:
        return d + datetime.timedelta(days=1)
    else:
        return d + datetime.timedelta(days=offset)


def parse_num(s):
    s = s.replace(",", "")
    if s[0] == "(":
        return -float(s[1:-1])
    else:
        return float(s)