aboutsummaryrefslogtreecommitdiffstats
path: root/python/dtcc_sdr.py
blob: 49e72493cacd89da52dd2390508695af65fa44be (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import datetime
import io
import pandas as pd
import requests
import zipfile

from pathlib import Path
from utils.db import dbconn


def download_credit_slices(d: datetime.date) -> None:
    for i in range(1, 400):
        url = f"https://kgc0418-tdw-data2-0.s3.amazonaws.com/slices/SLICE_CREDITS_{d:%Y_%m_%d}_{i}.zip"
        r = requests.get(url)
        if r.status_code != 200:
            continue
        with zipfile.ZipFile(io.BytesIO(r.content)) as z:
            z.extractall()


def download_cumulative_credit(d: datetime.date) -> None:
    url = f"https://kgc0418-tdw-data2-0.s3.amazonaws.com/slices/CUMULATIVE_CREDITS_{d:%Y_%m_%d}.zip"
    r = requests.get(url)
    if r.status_code != 200:
        return
    with zipfile.ZipFile(io.BytesIO(r.content)) as z:
        z.extractall(path="/home/serenitas/CorpCDOs/data/DTCC")


def load_data():
    base_dir = Path("/home/serenitas/CorpCDOs/data/DTCC/")
    df = pd.concat(
        [
            pd.read_csv(
                f,
                parse_dates=["EXECUTION_TIMESTAMP", "EFFECTIVE_DATE", "END_DATE"],
                thousands=",",
            )
            for f in base_dir.glob("*.csv")
        ]
    )
    df.DISSEMINATION_ID = df.DISSEMINATION_ID.astype("int")
    for col in [
        "ACTION",
        "CLEARED",
        "PRICE_NOTATION_TYPE",
        "OPTION_TYPE",
        "OPTION_CURRENCY",
        "INDICATION_OF_COLLATERALIZATION",
        "EXECUTION_VENUE",
        "DAY_COUNT_CONVENTION",
        "NOTIONAL_CURRENCY_1",
        "SETTLEMENT_CURRENCY",
    ]:
        df[col] = df[col].astype("category")
    df.ORIGINAL_DISSEMINATION_ID = df.ORIGINAL_DISSEMINATION_ID.astype("Int64")
    df.UNDERLYING_ASSET_1 = df.UNDERLYING_ASSET_1.str.rsplit(":", n=1, expand=True)[1]
    df = df[~df.DISSEMINATION_ID.isin(df.ORIGINAL_DISSEMINATION_ID)]
    df = df[df.ACTION != "CANCEL"]
    del df["ASSET_CLASS"]
    del df["ACTION"]
    return df


def process_option_data(df):
    df = df[df.OPTION_FAMILY.notnull()]
    df = df.dropna(axis=1, how="all")
    del df["OPTION_FAMILY"]
    for col in [
        "INDICATION_OF_END_USER_EXCEPTION",
        "INDICATION_OF_OTHER_PRICE_AFFECTING_TERM",
        "BLOCK_TRADES_AND_LARGE_NOTIONAL_OFF-FACILITY_SWAPS",
    ]:
        df[col] = df[col].map({"N": False, "Y": True})
    df.at[df.DISSEMINATION_ID == 107282774, "OPTION_EXPIRATION_DATE"] = "2019-09-18"
    for col in ["EFFECTIVE_DATE", "OPTION_EXPIRATION_DATE", "OPTION_LOCK_PERIOD"]:
        df[col] = pd.to_datetime(df[col], errors="raise")
    df = df.rename(
        columns={
            "OPTION_STRIKE_PRICE": "strike",
            "OPTION_EXPIRATION_DATE": "expiration_date",
            "UNDERLYING_ASSET_1": "redindexcode",
            "ROUNDED_NOTIONAL_AMOUNT_1": "notional",
            "OPTION_PREMIUM": "premium",
            "OPTION_TYPE": "option_type",
            "PRICE_NOTATION": "price",
            "EXECUTION_TIMESTAMP": "trade_timestamp",
        }
    )
    df.strike = df.strike.where(df.strike < 1000, df.strike / 100).where(
        df.strike > 10, df.strike * 100
    )
    df.price = (df.price * 1e2).where(df.PRICE_NOTATION_TYPE == "Percentage", df.price)
    conn = dbconn("serenitasdb")
    df_indic = pd.read_sql_query(
        "SELECT redindexcode, index, series, version FROM index_version", conn
    )
    conn.close()
    df = df.merge(df_indic, on="redindexcode")
    df = df.set_index(["index", "series", "version", "trade_timestamp"]).sort_index()
    return df[
        [
            "DISSEMINATION_ID",
            "expiration_date",
            "notional",
            "strike",
            "option_type",
            "premium",
            "price",
        ]
    ]


def process_tranche_data(df):
    df = df[df.TAXONOMY.str.startswith("Credit:IndexTranche")]
    df = df.loc[:, ~df.columns.str.contains("OPTION")]
    df.sort_values("EXECUTION_TIMESTAMP", inplace=True)
    return df


if __name__ == "__main__":
    pass
    dr = pd.bdate_range("2018-01-01", "2019-02-11")
    for d in dr:
        download_cumulative_credit(d)