1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
|
from analytics.index_data import get_index_quotes, index_returns
from db import dbengine
from analytics import Index, Portfolio
from analytics.utils import roll_date
from dateutil.relativedelta import relativedelta
import pandas as pd
import math
import statsmodels.formula.api as smf
from analytics.basket_index import MarkitBasketIndex
import numpy as np
import matplotlib.pyplot as plt
from statsmodels.sandbox.regression.predstd import wls_prediction_std
_engine = dbengine('serenitasdb')
def on_the_run(index):
r = _engine.execute("SELECT max(series) FROM index_version WHERE index=%s",
(index,))
series, = r.fetchone()
return series
def curve_spread_diff(index='IG', rolling=6):
otr = on_the_run(index)
## look at spreads
df = get_index_quotes(index, list(range(otr - rolling, otr + 1)),
tenor=['3yr', '5yr', '7yr', '10yr'])
spreads = df.groupby(level=['date', 'tenor']).nth(-1)['closespread'].unstack(-1)
spreads_diff = spreads.diff(axis=1)
del spreads_diff['3yr']
spreads_diff.columns = ['3-5', '5-7', '7-10']
spreads_diff['5-10'] = spreads_diff['5-7'] + spreads_diff['7-10']
return spreads_diff
def spreads_diff_table(spreads_diff):
def current(s):
return s.iat[-1]
def zscore(s):
return (s.iat[-1] - s.mean()) / s.std()
df = spreads_diff.agg(['min', 'max','mean', current, zscore])
((spreads_diff - spreads_diff.mean())/spreads_diff.std()).plot()
return df
def theta_matrix_by_series(index='IG', rolling=6):
otr = on_the_run(index)
df = get_index_quotes(index, list(range(otr - rolling, otr + 1)),
tenor=['3yr', '5yr', '7yr', '10yr'])
df['theta_per_dur'] = df.theta2 / df.duration2
theta_matrix = df.groupby(level=['date', 'tenor','series']).nth(-1)['theta_per_dur']
theta_matrix = theta_matrix.loc[theta_matrix.index[-1][0]].unstack(0)
return theta_matrix[['3yr', '5yr', '7yr', '10yr']]
def ratio_within_series(index='IG', rolling=6, param='duration'):
otr = on_the_run(index)
df = get_index_quotes(index, list(range(otr - rolling, otr + 1)),
tenor=['3yr', '5yr', '7yr', '10yr']).unstack()
ratio = (df[param].
apply(lambda s: s / df[param]['5yr'].values, raw=True))
ratio.columns = pd.MultiIndex.from_product([[param + '_ratio_to_5yr'], ratio.columns])
df = df.join(ratio).groupby(['date']).tail(1)
df = df.reset_index(level=['index', 'version'], drop=True)
return df
def curve_3_5_10(df):
"""
Parameters
----------
df: duration ratio within series"""
#buy 3y, sell 5y, buy 10y
s = - df.theta2['3yr'] / df.duration_ratio_to_5yr['3yr'] \
+ 2 * df.theta2['5yr'] \
- df.theta2['10yr'] / df.duration_ratio_to_5yr['10yr']
s.dropna().unstack(-1).plot()
def curve_5_10(df):
#buy sell 5y, buy 10y
s = df.theta2['5yr'] - df.theta2['10yr'] / df.duration_ratio_to_5yr['10yr']
s.dropna().unstack(-1).plot()
def on_the_run_theta(index='IG', rolling=6):
otr = on_the_run(index)
df = get_index_quotes(index, list(range(otr - rolling, otr + 1)),
tenor=['3yr', '5yr', '7yr', '10yr'])
df['theta_per_dur'] = df.theta2/df.duration2
theta_matrix = df.groupby(level=['date', 'tenor']).nth(-1)['theta_per_dur']
theta_matrix.unstack(-1).plot()
def curve_returns(index='IG', rolling=6):
## look at returns
otr = on_the_run(index)
df = index_returns(index=index, series=list(range(otr - rolling, otr + 1)),
tenor=['3yr', '5yr', '7yr', '10yr'])
## on-the-run returns
df = df.reset_index().set_index(['date', 'series', 'tenor'])
returns = df.price_return.dropna().unstack(-1).groupby(level='date').nth(-1)
strategies_return = pd.DataFrame(
{'5-10': 1.78 * returns['5yr'] - returns['10yr'],
'7-10': 1.33 * returns['7yr'] - returns['10yr'],
'3-5-10': -2 * returns['3yr'] + 3 * returns['5yr'] - returns['10yr'],
'3-5': returns['5yr'] - 1.56 * returns['3yr'],
'3-7': returns['7yr'] - 2.07 * returns['3yr']})
strategies_return_monthly = (strategies_return.
groupby(pd.Grouper(freq='M')).
agg(lambda df: (1 + df).prod() - 1))
def sharpe(df, period="daily"):
if period == "daily":
return df.mean() / df.std() * math.sqrt(252)
else:
return df.mean() / df.std() * math.sqrt(12)
results = strategies_return.agg([sharpe, lambda df: df.nsmallest(10).mean()])
sharpe_monthly = strategies_return_monthly.agg(sharpe, period="monthly")
sharpe_monthly.name = 'Monthly Sharpe'
results.index=['Sharpe', 'Mean Worst 10 Days DrawDown']
return results.append(sharpe_monthly)
def cross_series_curve(index='IG', rolling=6):
otr = on_the_run(index)
df = index_returns(index= index, series=list(range(otr - rolling, otr + 1)),
tenor=['3yr', '5yr', '7yr', '10yr'])
## look cross series - 3y to 5y
df = df.reset_index().set_index(['date', 'index', 'tenor', 'series'])
returns1 = df.xs(['5yr', index], level = ['tenor','index']).price_return.unstack(-1)
price_diff = pd.DataFrame()
for ind in list(range(otr - 2, otr + 1)):
price_diff[ind] = returns1[ind] - 1.6 * returns1[ind - 4]
price_diff = price_diff.stack().groupby(level = 'date').nth(-1)
monthly_returns_cross_series = (price_diff.
groupby(pd.Grouper(freq='M')).
agg(lambda df: (1 + df).prod() - 1))
plt.plot(monthly_returns_cross_series)
def forward_loss(index='IG'):
start_date = (pd.Timestamp.now() - pd.DateOffset(years=3)).date()
df = pd.read_sql_query("SELECT date, index, series, tenor, duration, closespread, "\
"closespread*duration / 100 AS indexel " \
"FROM index_quotes WHERE index=%s AND date >= %s " \
"ORDER BY date DESC, series ASC, duration ASC",
serenitasdb, parse_dates=['date'], params=[index, start_date])
df1 = pd.read_sql_query("SELECT index, series, tenor, maturity FROM index_maturity",
serenitasdb, parse_dates=['maturity'])
df = df.merge(df1, on=['index','series','tenor'])
df = df.set_index(['date','index', 'maturity']).dropna()
df = df.groupby(level=['date','index', 'maturity']).nth(-1)
# annual change, to take out some noise
df['fwd_loss_rate'] = df.indexel.diff(2)/df.duration.diff(2)
def curve_model(tenor_1='5yr', tenor_2='10yr'):
#OLS model
df = ratio_within_series(param='closespread')
df = pd.concat([df.duration[tenor_1], df.duration[tenor_2],
df.closespread[tenor_1],
df.closespread_ratio_to_5yr[tenor_2],
df.theta[tenor_1], df.theta[tenor_2]],
axis=1,
keys=['duration1', 'duration2', 'closespread',
'ratio', 'theta1', 'theta2'])
df = np.log(df)
ols_model = smf.ols('ratio ~ closespread + duration1 + theta1 + theta2',
data=df).fit()
return df, ols_model
def curve_model_results(df, model):
df = df.dropna()
prstd_ols, df['down_2_stdev'], df['up_2_stdev'] = wls_prediction_std(model)
#dr/dspread = exp(k) + spread_coeff * duration ^ dur_coeff * spread ^ (spread_coeff-1)
cols = ['ratio', 'closespread', 'down_2_stdev', 'up_2_stdev']
df[cols] = np.exp(df[cols])
df['predicted'] = np.exp(model.predict())
df[['predicted', 'down_2_stdev', 'up_2_stdev']]=\
df[['predicted', 'down_2_stdev', 'up_2_stdev']].multiply(df['closespread'].values, axis=0)
ax = df[['predicted', 'down_2_stdev', 'up_2_stdev']].reset_index(level='series', drop=True).plot()
df['dr_dspread'] = np.exp(model.params[0]) * model.params[2] * df.duration1 ** model.params[1] * df.closespread ** (model.params[2] - 1)
return df
def spread_fin_crisis(index='IG'):
otr = on_the_run(index)
## look at spreads
df = get_index_quotes(index, list(range(8, otr + 1)),
tenor=['3yr', '5yr', '7yr', '10yr'], years=20)
spreads = df.groupby(level=['date', 'tenor']).nth(-1)['closespread'].unstack(-1)
spreads_diff = spreads.diff(axis=1)
to_plot = pd.DataFrame()
to_plot['spread'] = spreads['5yr']
to_plot['3 - 5 diff'] = spreads_diff['5yr']
to_plot['5 - 10 diff'] = spreads_diff['7yr'] + spreads_diff['10yr']
fig = plt.figure()
ax = fig.add_subplot(111)
ax2 = ax.twinx() # Create another axes that shares the same x-axis as ax
width = 0.4
to_plot['spread'].plot(color='red', ax=ax)
to_plot['5 - 10 diff'].plot(color='blue', ax=ax2)
to_plot['3 - 5 diff'].plot(color='green', ax=ax2)
plt.legend(bbox_to_anchor=(.5, -.1), ncol = 2)
plt.show()
def forward_spread(index='IG', series=None, tenors=['3yr', '5yr', '7yr', '10yr']):
if series is None:
series = on_the_run(index = index)
b_index = MarkitBasketIndex(index, series, tenors)
b_index.tweak()
f_spread = []
date_range = pd.bdate_range(pd.datetime.today(), max(b_index.maturities), freq='M')
for d in date_range.date:
b_index.trade_date = d
f_spread.append(b_index.spread())
return pd.concat(f_spread, keys=date_range).unstack(-1)
def spot_forward(index='IG', series=None, tenors=['3yr', '5yr', '7yr', '10yr']):
if series is None:
series = on_the_run(index)
b_index = MarkitBasketIndex(index, series, tenors)
b_index.tweak()
spreads_current = b_index.spread()
spreads_current.name = 'current'
spreads_1yr = pd.Series([b_index.spread(m - relativedelta(years=1), b_index.coupon(m)) \
for m in b_index.maturities], index=tenors)
spreads_1yr.name = '1yr'
df = pd.concat([spreads_current, spreads_1yr], axis=1)
maturity_1yr = roll_date(b_index.index_desc.issue_date[0], 1)
df_0 = pd.DataFrame({'current':[0., b_index.spread(maturity_1yr,
0.01 if index == "IG" else 0.05)],
'1yr': [0., 0.]}, index=['0yr', '1yr'])
df_0.index.name = 'tenor'
df = df_0.append(df)
df['maturity'] = [b_index.trade_date, maturity_1yr] + b_index.maturities
return df.reset_index().set_index('maturity')
|