aboutsummaryrefslogtreecommitdiffstats
path: root/python/exploration/curve_trades.py
blob: aee30dcd24340dcbbaab5e047add85d0352f000e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
from index_data import get_index_quotes, index_returns
import pandas as pd
import math
from scipy.stats.mstats import zscore
import datetime
import statsmodels.formula.api as smf
from statsmodels.sandbox.regression.predstd import wls_prediction_std
import numpy as np
import matplotlib.pyplot as plt

def curve_spread_diff(index = 'IG', on_the_run = 28):
    ## look at spreads
    df = get_index_quotes(index, list(range(on_the_run-6,on_the_run+1)), tenor=['3yr', '5yr', '7yr', '10yr'])
    spreads = df.groupby(level=['date', 'tenor']).nth(-1)['closespread'].unstack(-1)
    # remove 'yr'
    spreads.columns = [int(col[:-2]) for col in spreads.columns]
    spreads = spreads.sort_index(1)
    spreads_diff = spreads.diff(axis=1)
    spreads_diff = spreads_diff.filter([5, 7, 10])
    spreads_diff['5-10'] = spreads_diff[7] + spreads_diff[10]
    spreads_diff.columns = ['3-5', '5-7', '7-10', '5-10']
    return spreads_diff

def spreads_diff_table(spreads_diff):
    df = pd.DataFrame()
    df['min'] = spreads_diff.min()
    df['max'] = spreads_diff.max()
    df['average'] = spreads_diff.mean()
    df['current'] = spreads_diff.iloc[-1]
    df['zscore'] = pd.Series(zscore(spreads_diff)[-1], index = df.index)
    pd.DataFrame(zscore(spreads_diff), index=spreads_diff.index, columns=spreads_diff.columns).plot()
    return df

def theta_matrix_by_series(index = 'IG', on_the_run = 28):
    df = get_index_quotes(index, list(range(on_the_run-6,on_the_run+1)), tenor=['3yr', '5yr', '7yr', '10yr'])
    df['theta_per_dur'] = df.theta2/df.duration2
    theta_matrix = df.groupby(level=['date', 'tenor','series']).nth(-1)['theta_per_dur']
    theta_matrix_1 = theta_matrix.xs(theta_matrix.index.max()[0], level = 0).unstack(0)
    return theta_matrix_1[['3yr', '5yr', '7yr', '10yr']]

def ratio_within_series(index = 'IG', on_the_run = 28, param = 'duration', groupby_level = ['date', 'series']):
    df = get_index_quotes(index, list(range(on_the_run-6,on_the_run+1)), tenor=['3yr', '5yr', '7yr', '10yr'])
    r = {}
    for i,g in df.groupby(level=groupby_level):
        five_yr = g.xs('5yr', level = 'tenor')[param]
        r[i] = g[param]/five_yr[-1]
    df1 = pd.concat(r)
    dftemp= pd.DataFrame(df1.groupby(level=['date', 'tenor','series']).nth(-1).rename(param+'_ratio_to_5yr'))
    df2 = df.groupby(level=['date', 'tenor','series']).nth(-1).merge(dftemp, left_index=True, right_index=True)
    return df2.unstack(-2)

def curve_3_5_10(df):
    #buy 3y, sell 5y, buy 10y
    df['3_5_10'] = - df.theta2['3yr'] / df.duration_ratio_to_5yr['3yr'] \
                   + 2 * df.theta2['5yr'] \
                   - df.theta2['10yr'] / df.duration_ratio_to_5yr['10yr']
    df['3_5_10'].dropna().unstack(-1).plot()

def curve_5_10(df):
    #buy sell 5y, buy 10y
    df['5_10'] = df.theta2['5yr'] - df.theta2['10yr'] / df.duration_ratio_to_5yr['10yr']
    df['5_10'].dropna().unstack(-1).plot()

def on_the_run_theta(index = 'IG', on_the_run = 28):
    df = get_index_quotes(index, list(range(on_the_run-6,on_the_run+1)), tenor=['3yr', '5yr', '7yr', '10yr'])
    df['theta_per_dur'] = df.theta2/df.duration2
    theta_matrix = df.groupby(level=['date', 'tenor']).nth(-1)['theta_per_dur']
    theta_matrix.unstack(-1).plot()

def curve_returns(index = 'IG', on_the_run = 28):
    ## look at returns
    df = index_returns(index= index, series=list(range(on_the_run-6,on_the_run+1)), tenor=['3yr', '5yr', '7yr', '10yr'])
    ## on-the-run returns
    returns = df.price_return.unstack(-1).dropna().groupby(level='date').nth(-1)

    strategy = ['510', '710', '3510']

    strategies_return = pd.DataFrame()
    strategies_return[strategy[0]] = 1.78 * returns['5yr'] - returns['10yr']
    strategies_return[strategy[1]] = 1.33 * returns['7yr'] - returns['10yr']
    strategies_return[strategy[2]] = -2 * returns['3yr']+ 3 * returns['5yr'] - 1 * returns['10yr']

    strategies_return_monthly = pd.DataFrame()
    for strat in strategy:
        strategies_return_monthly[strat] = strategies_return[strat].groupby(pd.TimeGrouper(freq='M')).agg(lambda df:(1+df).prod()-1)

    results = pd.DataFrame()
    sharpe = {}
    monthly_sharpe = {}
    for strat in strategy:
        sharpe[strat] = strategies_return[strat].mean()/strategies_return[strat].std()*math.sqrt(252)
        monthly_sharpe[strat] = strategies_return_monthly[strat].mean()/strategies_return_monthly[strat].std()*math.sqrt(12)

    worst_drawdown = {}
    for strat in strategy:
        worst_drawdown[strat] = strategies_return[strat].nsmallest(10).mean()

    results = results.append(sharpe, ignore_index=True)
    results = results.append(monthly_sharpe, ignore_index=True)
    results = results.append(worst_drawdown, ignore_index=True)
    results['results'] = ['Sharpe','Monthly Sharpe','Mean Worst 10 Days Drawdown']

    return results.set_index('results')

def cross_series_curve(index = 'IG', on_the_run = 28):

    df = index_returns(index= index, series=list(range(on_the_run-6,on_the_run+1)), tenor=['3yr', '5yr', '7yr', '10yr'])
    ## look cross series - 3y to 5y
    returns1 = df.xs(['5yr', index], level = ['tenor','index']).price_return.unstack(-1)
    price_diff = pd.DataFrame()
    for ind in list(range(on_the_run-2, on_the_run+1)):
        price_diff[ind] = returns1[ind] - 1.6* returns1[ind - 4]

    price_diff = price_diff.stack().groupby(level = 'date').nth(-1)
    monthly_returns_cross_series = price_diff.groupby(pd.TimeGrouper(freq='M')).agg(lambda df:(1+df).prod()-1)
    plt.plot(monthly_returns_cross_series)


def forward_loss():
    from db import dbengine, dbconn
    serenitasdb = dbengine('serenitasdb')
    index = 'IG'
    start_date = (pd.Timestamp.now() - pd.DateOffset(years=3)).date()

    df = pd.read_sql_query("SELECT date, index, series, tenor, duration, closespread, closespread*duration/100 as indexel " \
                           "FROM index_quotes WHERE index=%s AND date >= %s " \
                           "ORDER BY date DESC, series ASC, duration ASC",
                           serenitasdb, parse_dates=['date'], params=[index, start_date])
    df1 = pd.read_sql_query("select index, series, tenor, maturity from index_maturity", serenitasdb, parse_dates=['maturity'])

    df = df.merge(df1, on=['index','series','tenor'])
    df = df.set_index(['date','index', 'maturity']).dropna()
    df = df.groupby(level=['date','index', 'maturity']).nth(-1)
    # annual change, to take out some noise
    df['fwd_loss_rate'] = df.indexel.diff(2)/df.duration.diff(2)

def read_IG_curve_pos():
    from analytics import Index, Portfolio
    trade_1 = Index.from_tradeid(886)
    trade_2 = Index.from_tradeid(885)
    trade_3 = Index.from_tradeid(884)
    portf = Portfolio([trade_1, trade_2, trade_3])

def curve_model():

    #OLS model
    df = ratio_within_series(param = 'closespread', groupby_level = ['date', 'series'])
    df = df.groupby(level='date').last()

    df = pd.concat([df.duration['5yr'],df.closespread['5yr'], df.closespread_ratio_to_5yr['10yr']], axis = 1, keys=['duration', 'closespread', 'ratio'])
    results = smf.ols('np.log(ratio) ~ np.log(duration) + np.log(closespread)', data=df).fit()
    df['predicted'] = np.exp(results.predict())
    results.summary()
    prstd_ols, iv_l, iv_u = wls_prediction_std(results)
    df['up_2_stdev'] = np.exp(iv_u)
    df['down_2_stdev'] = np.exp(iv_l)

    #dr/dspread = exp(k) + spread_coeff * duration ^ dur_coeff * spread ^ (spread_coeff-1)
    df['dr_dspread'] = np.exp(results.params[0]) * results.params[2] * df.duration ** results.params[1] * df.closespread ** (results.params[2] -1)
    df['beta'] = df.dr_dspread * df.closespread

    return df