1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
|
import bottleneck as bn
import datetime
import numpy as np
import pandas as pd
import statsmodels.api as sm
import statsmodels.formula.api as smf
from analytics.basket_index import MarkitBasketIndex
from analytics import CreditIndex
from dateutil.relativedelta import relativedelta
from utils.db import dbengine
def get_dispersion(index_type, series, end_date=datetime.date.today()):
index = MarkitBasketIndex(index_type, series, ["5yr"])
dr = pd.bdate_range(index.issue_date, end_date)
dispersion = []
for d in dr:
index.value_date = d
dispersion.append(bn.nanstd(np.log(index.spreads())))
return pd.Series(dispersion, index=dr, name="dispersion")
def add_cumloss(df, index_type, series, engine):
cumloss = pd.read_sql_query(
"SELECT lastdate, cumulativeloss AS cumloss FROM index_version "
"WHERE index=%s and series=%s order by lastdate",
engine,
params=(index_type, series),
parse_dates=["lastdate"],
)
cumloss.iat[-1, 0] = pd.Timestamp.max
cumloss = (
cumloss.set_index("lastdate").sort_index().reindex(df.index, method="bfill")
)
return df.join(cumloss)
def get_corr_data(index_type, series, engine):
sql_str = (
"SELECT quotedate::date, indexrefspread, indexrefprice, index_duration, "
"index_expected_loss, corr_at_detach "
"FROM tranche_risk JOIN tranche_quotes "
"ON tranche_risk.tranche_id=tranche_quotes.id "
"WHERE index=%s and series=%s and tenor='5yr' and detach=%s order by quotedate desc"
)
df = pd.read_sql_query(
sql_str,
engine,
params=(index_type, series, 3 if index_type == "IG" else 15),
index_col=["quotedate"],
parse_dates=["quotedate"],
)
if index_type == "HY":
spread_equivalent = []
index = CreditIndex(index_type, series, "5yr")
for k, v in df.iterrows():
index.value_date = k
index.ref = v["indexrefprice"]
spread_equivalent.append(index.spread)
df["indexrefspread"] = spread_equivalent
df = df.assign(
fisher=lambda x: 0.5 * np.log((1 + x.corr_at_detach) / (1 - x.corr_at_detach))
)
return df
if __name__ == "__main__":
index_type = "HY"
series = 29
serenitas_engine = dbengine("serenitasdb")
dispersion = get_dispersion(index_type, series)
df = get_corr_data(index_type, series, serenitas_engine)
df = df.join(dispersion)
if index_type == "HY":
df = add_cumloss(df, index_type, series, serenitas_engine)
if index_type == "HY":
formula = "fisher ~ np.log(dispersion) + cumloss + np.log(index_duration)"
else:
formula = "fisher ~ np.log(dispersion) + np.log(indexrefspread) + np.log(index_duration)"
mod = smf.ols(formula=formula, data=df)
|