aboutsummaryrefslogtreecommitdiffstats
path: root/python/exploration/dispersion.py
blob: fac383c5c6cd213e564c9b1935165a7de32a0ca7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import datetime
import numpy as np
import pandas as pd
import statsmodels.api as sm
import statsmodels.formula.api as smf

from analytics.basket_index import MarkitBasketIndex
from analytics import CreditIndex
from scipy.special import logit, expit
from utils.db import dbengine


def get_corr_data(index_type, series, engine):
    sql_str = (
        "SELECT quotedate::date, indexrefspread, indexrefprice, index_duration, "
        "index_expected_loss, corr_at_detach "
        "FROM tranche_risk JOIN tranche_quotes "
        "ON tranche_risk.tranche_id=tranche_quotes.id "
        "WHERE index=%s and series=%s and tenor='5yr' and detach=%s order by quotedate desc"
    )
    df = pd.read_sql_query(
        sql_str,
        engine,
        params=(index_type, series, 3 if index_type == "IG" else 15),
        index_col=["quotedate"],
        parse_dates=["quotedate"],
    )
    if index_type == "HY":
        spread_equivalent = []
        index = CreditIndex(index_type, series, "5yr")
        for k, v in df.iterrows():
            index.value_date = k
            index.ref = v["indexrefprice"]
            spread_equivalent.append(index.spread)
        df["indexrefspread"] = spread_equivalent
    df = df.assign(
        fisher=lambda x: 0.5 * np.log((1 + x.corr_at_detach) / (1 - x.corr_at_detach))
    )
    return df


def get_tranche_data(conn, index_type, tenor="5yr"):
    sql_string = (
        "SELECT * FROM risk_numbers "
        "LEFT JOIN index_version USING (index, series, version) "
        "WHERE index = %s AND tenor=%s"
    )
    df = pd.read_sql_query(
        sql_string,
        conn,
        parse_dates={"date": {"utc": True}},
        params=(index_type, tenor),
    )
    del df["basketid"]
    df.date = (
        df.date.dt.tz_convert("America/New_York").dt.tz_localize(None).dt.normalize()
    )
    df = df.groupby(
        ["date", "index", "series", "version", "tenor", "attach"], as_index=False
    ).mean()
    df = df.assign(
        exp_percentage=lambda x: x.expected_loss / x.index_expected_loss,
        attach_adj=lambda x: np.maximum(
            (x.attach - x.cumulativeloss) / df.indexfactor, 0
        ),
        detach_adj=lambda x: np.minimum(
            (x.detach - x.cumulativeloss) / df.indexfactor, 1
        ),
        moneyness=lambda x: (x.detach_adj + x.attach_adj) / 2 / x.index_expected_loss,
    )
    df = df.set_index(["date", "index", "series", "version", "tenor", "attach"])
    series = tuple(df.index.get_level_values("series").unique())
    dispersion = pd.read_sql_query(
        "SELECT date, index, series, version, tenor, dispersion, gini from index_quotes "
        "WHERE index=%s AND series IN %s AND tenor=%s",
        conn,
        params=(index_type, series, tenor),
        index_col=["date", "index", "series", "version", "tenor"],
    )
    df = df.join(dispersion)
    return df


def create_models(conn, df) -> (pd.DataFrame, float):
    # Takes the output of get_tranche_data
    attach_max = df.index.get_level_values("attach").max()
    bottom_stack = df[df.index.get_level_values("attach") != attach_max]
    model = smf.ols(
        "logit(exp_percentage) ~ np.log(index_duration) + "
        "I(np.log(index_expected_loss)**2) + "
        "np.log(moneyness)*dispersion + "
        "np.log(index_expected_loss)*dispersion + "
        "I(np.log(moneyness)**2) + I(np.log(moneyness)**3)",
        data=bottom_stack,
    )
    f = model.fit()
    df.loc[df.index.get_level_values("attach") != attach_max, "predict"] = expit(
        f.predict(bottom_stack)
    )

    def aux(s):
        temp = s.values
        temp[-1] = 1 - temp[:-1].sum()
        return temp

    df["predict"] = df.groupby(["index", "series", "date"])["predict"].transform(aux)
    return (df, model)


if __name__ == "__main__":
    index_type = "HY"
    series = 29
    serenitas_engine = dbengine("serenitasdb")
    dispersion = get_dispersion(index_type, series)
    df = get_corr_data(index_type, series, serenitas_engine)
    df = df.join(dispersion)

    if index_type == "HY":
        formula = "fisher ~ np.log(dispersion) + cumloss + np.log(index_duration)"
    else:
        formula = "fisher ~ np.log(dispersion) + np.log(indexrefspread) + np.log(index_duration)"
    mod = smf.ols(formula=formula, data=df)