1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
|
import cvxpy
import datetime
import math
import numpy as np
import pandas as pd
from pandas.tseries.offsets import BDay
from arch import arch_model
from db import dbengine, dbconn
from scipy.interpolate import interp1d
from analytics import Index, ForwardIndex
from index_data import index_returns
serenitasdb = dbengine('serenitasdb')
def realized_vol(index, series, tenor='5yr', date=None, years=None, return_type='spread'):
"""computes the realized spread volatility"""
if date is None:
if years is None:
raise ValueError("need to provide at least one of date or years")
date = (pd.Timestamp.now() - pd.DateOffset(years=years)).date()
returns = index_returns(index=index, series=series, tenor=tenor, years=None)
# GARCH(1,1) volatility process with constant mean
am = arch_model(returns[return_type+'_return'])
res = am.fit(update_freq=0, disp='off')
return (res.conditional_volatility * math.sqrt(252), res)
def lr_var(res):
""" computes long run variance of the garch process
.. math::
\sigma^2=\frac{\omega}{1-\sum_{i=1}^p \alpha_i + \sum_{i=1}^q \beta_i}
"""
names = res.model.volatility.parameter_names()
## names[0] is omega, rest is alpha[1],..., alpha[p], beta[1],...,beta[q]
var = res.params[names[0]]/(1 - res.params[names[1:]])
return math.sqrt(var * 252)
def atm_vol_fun(v, moneyness=0.2, index=None):
f = interp1d(v.strike.values, v.vol.values, fill_value='extrapolate')
if index is None:
atm_val = v['fwdspread'].iat[0]
otm_val = atm_val * (1 + moneyness)
else:
index.ref = v['ref'].iat[0]
atm_val = ForwardIndex(index, v.index.get_level_values('expiry')[0]).forward_spread
otm_val = atm_val * (1 + moneyness)
if index._quote_is_price:
index.spread = atm_val
atm_val = index.price
index.spread = otm_val
otm_val = index.price
return pd.Series(f(np.array([atm_val, otm_val])), index = ['atm_vol', 'otm_vol'])
def atm_vol(index, date, series=None, moneyness=0.2):
sql_str = "SELECT * from swaption_ref_quotes JOIN swaption_quotes " \
"USING (quotedate, index, series, expiry) WHERE index=%s " \
"and quotedate >=%s"
params = (index.upper(), date)
if series:
sql_str += ' AND series = %s'
params = params + (series,)
df = pd.read_sql_query(sql_str, serenitasdb,
index_col=['quotedate', 'expiry', 'series'],
params=params, parse_dates=['quotedate'])
df1 = atm_vol_calc(df, index)
return df1
def atm_vol_calc(df, index):
g_temp = {}
for s, g1 in df.groupby(level='series'):
index_obj = Index.from_name(index, s, '5yr')
for date, g2 in g1.groupby(g1.index.get_level_values(0)):
index_obj.trade_date = date.date()
for expiry, g3 in g2.groupby(g2.index.get_level_values(1)):
g_temp[(date, expiry, s)] = atm_vol_fun(g3, index=index_obj)
df = pd.concat(g_temp, names=['quotedate', 'expiry', 'series'])
df = df.unstack(-1)
df = df.reset_index(level=['expiry', 'series'])
return df
def rolling_vol(df, col='atm_vol', term=[3]):
"""compute the rolling volatility for various terms"""
df = df.groupby(df.index).filter(lambda x: len(x)>2)
def aux(s, col, term):
k = s.index[0]
f = interp1d(s.expiry.values.astype('float'), s[col].values, fill_value='extrapolate')
x = np.array([(k + pd.DateOffset(months=t)).to_datetime64().astype('float') \
for t in term])
return pd.Series(f(x), index=[str(t)+'m' for t in term])
df = df.groupby(level='quotedate').apply(aux, col, term)
# MS quotes don't have fwdspread so they end up as NA
return df.dropna()
def vol_var(percentile=0.975, index='IG', start_date=datetime.date(2014, 6, 11)):
"""compute lo and hi percentiles of atm volatility daily change
Probably overestimates:
- we don't check that the quotes come from the same dealer
- we should group it by series
"""
df = atm_vol(index, start_date)
df = rolling_vol(df, term=[1,2,3])
df = df.sort_index()
df = df.groupby(df.index.date).nth(-1)
return df.diff().quantile([1-percentile, percentile])
def get_index_spread(index, series, date, conn):
with conn.cursor() as c:
c.execute("SELECT closespread from index_quotes " \
"WHERE index=%s and series=%s and date=%s and tenor='5yr'",
(index, series, date))
try:
spread, = c.fetchone()
except TypeError:
spread = None
conn.commit()
return spread
def get_index_ref(index, series, date, expiry, conn):
with conn.cursor() as c:
c.execute("SELECT ref, fwdspread from swaption_ref_quotes " \
"WHERE index=%s and series=%s and quotedate::date=%s "\
"AND expiry=%s ORDER BY quotedate desc",
(index, series, date, expiry))
try:
ref, fwdspread = c.fetchone()
except TypeError:
ref, fwdspread = None, None
conn.commit()
return ref, fwdspread
def get_option_pnl(strike, expiry, index, series, start_date, engine):
for s in [strike, strike+2.5, strike-2.5, strike+5]:
df = pd.read_sql_query("SELECT quotedate, (pay_bid+pay_offer)/2 AS pay_mid, " \
"(rec_bid+rec_offer)/2 AS rec_mid FROM swaption_quotes " \
"WHERE strike=%s and expiry=%s and index=%s and series=%s" \
"and quotedate>=%s", engine,
params=(s, expiry, index, series, start_date),
index_col='quotedate',
parse_dates=['quotedate'])
if not df.empty and df.index[0].date() == start_date:
strike = s
break
else:
raise ValueError("Couldn't find data starting from that date")
if not pd.api.types.is_datetime64tz_dtype(df.index):
df.index = df.index.tz_localize('utc')
df = df.groupby(df.index.normalize()).nth(-1)
if expiry < datetime.date.today():
spread = get_index_spread(index, series, expiry, engine.raw_connection())
underlying = Index.from_name(index, series, "5yr", expiry, 1e4)
underlying.spread = spread
pv = underlying.pv
underlying.spread = strike
if spread > strike:
pay_mid, rec_mid = pv-underlying.pv, 0
else:
pay_mid, rec_mid = 0, underlying.pv - pv
pv = underlying.pv
df = df.append(pd.DataFrame([[pay_mid, rec_mid]],
columns=['pay_mid', 'rec_mid'],
index=[pd.Timestamp(expiry, tz='UTC')]))
return df, strike
def sell_vol_strategy(index="IG", months=3):
engine = dbengine('serenitasdb')
conn = engine.raw_connection()
with conn.cursor() as c1, conn.cursor() as c2:
c1.execute("SELECT DISTINCT series, expiry FROM " \
"swaption_quotes ORDER BY expiry, series desc")
d = {}
for series, expiry in c1:
start_date = BDay().rollback(expiry - pd.DateOffset(months=months)).date()
if start_date > datetime.date.today():
break
c2.execute("SELECT max(quotedate::date) FROM swaption_quotes WHERE " \
"index=%s AND series=%s AND expiry=%s AND quotedate<=%s",
(index, series, expiry, start_date))
actual_start_date, = c2.fetchone()
if actual_start_date is None or (start_date - actual_start_date).days > 5:
continue
ref, fwdspread = get_index_ref(index, series, actual_start_date, expiry, conn)
if fwdspread is None:
fwdspread = ref + months / 50 #TODO: use actual values
strike = round(fwdspread/2.5) * 2.5
pnl, strike = get_option_pnl(strike, expiry, index, series, actual_start_date, engine)
d[(series, strike, expiry)] = pnl
conn.commit()
return d
def aggregate_trades(d):
r = pd.Series()
for v in d.values():
r = r.add(-v.sum(1).diff().dropna(), fill_value=0)
return r
def compute_allocation(df):
Sigma = df.cov().values
gamma = cvxpy.Parameter(sign='positive')
mu = df.mean().values
w = cvxpy.Variable(3)
ret = mu.T*w
risk = cvxpy.quad_form(w, Sigma)
prob = cvxpy.Problem(cvxpy.Maximize(ret - gamma * risk),
[cvxpy.sum_entries(w) == 1,
w >= -2,
w <= 2])
gamma_x = np.linspace(0, 0.02, 500)
W = np.empty((3, gamma_x.size))
for i, val in enumerate(gamma_x):
gamma.value = val
prob.solve()
W[:,i] = np.asarray(w.value).squeeze()
fund_return = mu @ W
fund_vol= np.array([math.sqrt(W[:,i] @ Sigma @W[:,i]) for i in range(gamma_x.size)])
return (W, fund_return, fund_vol)
if __name__ == "__main__":
d1 = sell_vol_strategy(months=1)
d2 = sell_vol_strategy(months=2)
d3 = sell_vol_strategy(months=3)
all_tenors = pd.concat([aggregate_trades(d) for d in [d1, d2, d3]], axis=1)
all_tenors.columns = ['1m', '2m', '3m']
all_tenors['optimal'] = ((1.2*all_tenors['1m']).
sub(1.2*all_tenors['2m'], fill_value=0).
add(all_tenors['3m'], fill_value=0))
|