1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
|
import sys
#don't do this at home
sys.path.append("..")
from analytics import Swaption, BlackSwaption, Index, VolatilitySurface
from analytics.scenarios import run_swaption_scenarios, run_index_scenarios
from pandas.tseries.offsets import BDay
import datetime
import numpy as np
import pandas as pd
from scipy.interpolate import SmoothBivariateSpline
from matplotlib import cm
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import os
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import AxesGrid
def shiftedColorMap(cmap, start=0, midpoint=0.5, stop=1.0, name='shiftedcmap'):
'''
Function to offset the "center" of a colormap. Useful for
data with a negative min and positive max and you want the
middle of the colormap's dynamic range to be at zero
Input
-----
cmap : The matplotlib colormap to be altered
start : Offset from lowest point in the colormap's range.
Defaults to 0.0 (no lower ofset). Should be between
0.0 and `midpoint`.
midpoint : The new center of the colormap. Defaults to
0.5 (no shift). Should be between 0.0 and 1.0. In
general, this should be 1 - vmax/(vmax + abs(vmin))
For example if your data range from -15.0 to +5.0 and
you want the center of the colormap at 0.0, `midpoint`
should be set to 1 - 5/(5 + 15)) or 0.75
stop : Offset from highets point in the colormap's range.
Defaults to 1.0 (no upper ofset). Should be between
`midpoint` and 1.0.
'''
cdict = {
'red': [],
'green': [],
'blue': [],
'alpha': []
}
# regular index to compute the colors
reg_index = np.linspace(start, stop, 257)
# shifted index to match the data
shift_index = np.hstack([
np.linspace(0.0, midpoint, 128, endpoint=False),
np.linspace(midpoint, 1.0, 129, endpoint=True)
])
for ri, si in zip(reg_index, shift_index):
r, g, b, a = cmap(ri)
cdict['red'].append((si, r, r))
cdict['green'].append((si, g, g))
cdict['blue'].append((si, b, b))
cdict['alpha'].append((si, a, a))
newcmap = matplotlib.colors.LinearSegmentedColormap(name, cdict)
plt.register_cmap(cmap=newcmap)
return newcmap
def plot_df(df, spread_shock, vol_shock, attr="pv"):
val_date = df.index[0].date()
fig = plt.figure()
ax = fig.gca(projection='3d')
## use smoothing spline on a finer grid
series = df[attr]
f = SmoothBivariateSpline(df.vol_shock.values, df.spread_shock.values, series.values)
xx, yy = np.meshgrid(vol_shock, spread_shock)
surf = ax.plot_surface(xx, yy, f(vol_shock, spread_shock).T, cmap=cm.viridis)
ax.set_xlabel("Volatility shock")
ax.set_ylabel("Spread")
ax.set_zlabel("PnL")
ax.set_title('{} of Trade on {}'.format(attr.title(), val_date))
def plot_color_map(df, spread_shock, vol_shock, attr="pv", path="."):
val_date = df.index[0].date()
#rows are spread, columns are volatility surface shift
fig, ax = plt.subplots()
series = df[attr]
#Different ways to do a colormap: imshow and pcolormesh. using imshow here
midpoint = 1 - series.max() / (series.max() + abs(series.min()))
shifted_cmap = shiftedColorMap(cm.RdYlGn, midpoint=midpoint, name='shifted')
chart = ax.imshow(series.values.reshape(spread_shock.size, vol_shock.size).T,
extent=(spread_shock.min(), spread_shock.max(),
vol_shock.min(), vol_shock.max()),
aspect='auto', interpolation='bilinear', cmap=shifted_cmap)
ax.set_xlabel('Spread')
ax.set_ylabel('Volatility shock')
ax.set_title('{} of Trade on {}'.format(attr.title(), val_date))
fig.colorbar(chart, shrink=.8)
fig.savefig(os.path.join(path, "payer_swap_{}.png".format(val_date)))
option_delta = Index.from_tradeid(870)
payer1 = BlackSwaption(ig27, datetime.date(2017, 4, 19), 65)
payer2 = BlackSwaption(ig27, datetime.date(2017, 5, 17), 72)
payer1.notional = 100_000_000
payer2.notional = 100_000_000
date_range = pd.bdate_range(trade_date, pd.Timestamp('2017-04-19') - BDay(), freq = '5B')
vol_shock = np.arange(-0.15, 0.3, 0.01)
spread_shock = np.arange(-0.2, 0.3, 0.01)
vs = VolatilitySurface("IG", 27, trade_date=trade_date)
vol_surface = vs[vs.list()[-1]]
# #
df1 = run_swaption_scenarios(payer1, date_range, spread_shock, vol_shock, vol_surface)
df2 = run_swaption_scenarios(payer2, date_range, spread_shock, vol_shock, vol_surface)
# #plot it
week = -1
df = df1
df = df.assign(pv=df1.pv-df2.pv)
spread_plot_range = ig27.ref * (1 + np.arange(-0.2, 0.3, 0.001))
vol_shock_range = np.arange(-0.15, 0.3, 0.001)
plot_df(df.loc[date_range[week]], spread_plot_range, vol_shock_range)
plot_color_map(df.loc[date_range[week]], ig27.ref * (1 + spread_shock), vol_shock)
|