aboutsummaryrefslogtreecommitdiffstats
path: root/python/exploration/swaption_calendar_spread.py
blob: d703bbe70c5e35030f03cdbac764720e4fd2540d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import sys
#don't do this at home
sys.path.append("..")
from analytics import Swaption, BlackSwaption, Index, VolatilitySurface, Portfolio
from analytics.scenarios import run_swaption_scenarios, run_index_scenarios, run_portfolio_scenarios
from pandas.tseries.offsets import BDay
import datetime
import numpy as np
import pandas as pd
from scipy.interpolate import SmoothBivariateSpline

from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt

import os
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from graphics import plot_time_color_map

from db import dbengine
engine  = dbengine('serenitasdb')


def plot_df(df, spread_shock, vol_shock, attr="pnl"):
    val_date = df.index[0].date()
    fig = plt.figure()

    ax = fig.gca(projection='3d')
    ## use smoothing spline on a finer grid
    series = df[attr]
    f = SmoothBivariateSpline(df.vol_shock.values, df.spread_shock.values, series.values)
    xx, yy = np.meshgrid(vol_shock, spread_shock)
    surf = ax.plot_surface(xx, yy, f(vol_shock, spread_shock).T, cmap=cm.viridis)
    ax.set_xlabel("Volatility shock")
    ax.set_ylabel("Spread")
    ax.set_zlabel("PnL")
    ax.set_title('{} of Trade on {}'.format(attr.title(), val_date))

def plot_color_map(df, spread_shock, vol_shock, attr="pnl", path=".", index ='IG'):

    val_date = df.index[0].date()
    #rows are spread, columns are volatility surface shift
    fig, ax = plt.subplots()
    #We are plotting an image, so we have to sort from high to low on the Y axis
    ascending = [False,False] if index == 'HY' else [True,False]
    df.sort_values(by=['spread','vol_shock'], ascending = ascending, inplace = True)
    series = df[attr]

    midpoint = 1 - series.max() / (series.max() + abs(series.min()))
    shifted_cmap = shiftedColorMap(cm.RdYlGn, midpoint=midpoint, name='shifted')

    chart = ax.imshow(series.values.reshape(spread_shock.size, vol_shock.size).T,
                      extent=(spread_shock.min(), spread_shock.max(),
                              vol_shock.min(), vol_shock.max()),
                      aspect='auto', interpolation='bilinear', cmap=shifted_cmap)

    ax.set_xlabel('Price') if index == 'HY' else ax.set_xlabel('Spread')
    ax.set_ylabel('Volatility shock')
    ax.set_title('{} of Trade on {}'.format(attr.title(), val_date))

    fig.colorbar(chart, shrink=.8)
    #fig.savefig(os.path.join(path, "vol_spread_color_map"+ attr+ "_{}.png".format(val_date)))

def plot_trade_scenarios(portf, shock_min=-.15, shock_max=.2, period = -1, vol_time_roll=True):

    portf.reset_pv()
    earliest_date = min(portf.swaptions, key=lambda x: x.exercise_date).exercise_date
    #earliest_date = max(portf.swaptions,key=attrgetter('exercise_date')).exercise_date
    date_range = pd.bdate_range(portf.indices[0].trade_date, earliest_date - BDay(), freq = '3B')
    vol_shock = np.arange(-0.15, 0.3, 0.01)
    spread_shock = np.arange(shock_min, shock_max, 0.01)
    index = portf.indices[0].name.split()[1]
    series = portf.indices[0].name.split()[3][1:]
    vs = VolatilitySurface(index, series, trade_date=portf.indices[0].trade_date)
    vol_select = vs.list(option_type='payer', model='black')[-1]
    vol_surface = vs[vol_select]

    df = run_portfolio_scenarios(portf, date_range, spread_shock, vol_shock, vol_surface,
                                 params=["pnl","delta"])

    hy_plot_range = 100 + (500 - portf.indices[0].spread * (1 + spread_shock)) * \
                    abs(portf.indices[0].DV01) / portf.indices[0].notional * 100

    shock =  hy_plot_range if index == 'HY' else portf.indices[0].spread * (1 + spread_shock)

    plot_time_color_map(df[round(df.vol_shock,2)==0], shock, 'pnl', index=index)
    plot_time_color_map(df[round(df.vol_shock,2)==.2], shock, 'pnl', index=index)
    #plot_time_color_map(df[round(df.vol_shock,2)==0], shock, 'delta', color_map = cm.coolwarm_r, index=index)
    plot_color_map(df.loc[date_range[period]], shock, vol_shock, 'pnl', index=index)
    #plot_df(df.loc[date_range[period]], shock, vol_shock)
    return df

def exercise_probability():

    from analytics import Swaption, BlackSwaption, Index, VolatilitySurface, Portfolio, ProbSurface, QuoteSurface, VolSurface
    from analytics.scenarios import run_swaption_scenarios, run_index_scenarios, run_portfolio_scenarios
    import datetime
    from operator import attrgetter

    import exploration.swaption_calendar_spread as spread

    import sys
    #don't do this at home
    from pandas.tseries.offsets import BDay
    import datetime
    import numpy as np
    import pandas as pd
    from scipy.interpolate import SmoothBivariateSpline
    from matplotlib import cm
    from mpl_toolkits.mplot3d import Axes3D
    import matplotlib.pyplot as plt
    from operator import attrgetter

    import os
    import numpy as np
    import matplotlib
    import matplotlib.pyplot as plt
    from mpl_toolkits.axes_grid1 import AxesGrid

    import re
    from db import dbengine
    engine  = dbengine('serenitasdb')

    #import swaption_calendar_spread as spread

    #Ad hoc
    option_delta = Index.from_name('HY', 29, '5yr')
    option_delta.price = 107.875
    option1 = BlackSwaption(option_delta, datetime.date(2017, 12, 20), 107, option_type="payer")
    option2 = BlackSwaption(option_delta, datetime.date(2017, 12, 20), 105, option_type="payer")
    option1.sigma = .280
    option2.sigma = .371
    option1.notional = 20_000_000
    option2.notional = 40_000_000
    option1.direction = 'Long'
    option2.direction = 'Short'
    option_delta.notional = option1.notional * option1.delta + option2.notional * option2.delta
    option_delta.direction = 'Seller' if option_delta.notional > 0 else 'Buyer'
    option_delta.notional = abs(option_delta.notional)
    portf = Portfolio([option1, option2, option_delta])

    portf.reset_pv()
    earliest_date = min(portf.swaptions,key=attrgetter('exercise_date')).exercise_date
    date_range = pd.bdate_range(portf.indices[0].trade_date, earliest_date - BDay(), freq = '5B')
    vol_shock = np.arange(-0.15, 0.3, 0.01)
    spread_shock = np.arange(-0.15, 0.35, 0.01)
    index = portf.indices[0].name.split()[1]
    series = portf.indices[0].name.split()[3][1:]

    vs = QuoteSurface(index, series, trade_date=portf.indices[0].trade_date)

    vs = VolatilitySurface(index, series, trade_date=portf.indices[0].trade_date)
    vol_select = vs.list(option_type='payer', model='black')[-1]
    vol_surface = vs[vol_select]

    prob = vs.prob_surf(vol_select)
    vs.prob_plot(vol_select)