aboutsummaryrefslogtreecommitdiffstats
path: root/python/exploration/swaption_calendar_spread.py
blob: a007bbb9ee11c7c8f2951b4aaec2c7a411b2f982 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import sys
#don't do this at home
sys.path.append("..")
from analytics import BlackSwaption, Swaption, Index, VolatilitySurface
from analytics.scenarios import run_swaption_scenarios
from pandas.tseries.offsets import BDay
import datetime
import numpy as np
import pandas as pd
from scipy.interpolate import SmoothBivariateSpline
from matplotlib import cm
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from copy import deepcopy

import os
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import AxesGrid

def shiftedColorMap(cmap, start=0, midpoint=0.5, stop=1.0, name='shiftedcmap'):
    '''
    Function to offset the "center" of a colormap. Useful for
    data with a negative min and positive max and you want the
    middle of the colormap's dynamic range to be at zero

    Input
    -----
      cmap : The matplotlib colormap to be altered
      start : Offset from lowest point in the colormap's range.
          Defaults to 0.0 (no lower ofset). Should be between
          0.0 and `midpoint`.
      midpoint : The new center of the colormap. Defaults to
          0.5 (no shift). Should be between 0.0 and 1.0. In
          general, this should be  1 - vmax/(vmax + abs(vmin))
          For example if your data range from -15.0 to +5.0 and
          you want the center of the colormap at 0.0, `midpoint`
          should be set to  1 - 5/(5 + 15)) or 0.75
      stop : Offset from highets point in the colormap's range.
          Defaults to 1.0 (no upper ofset). Should be between
          `midpoint` and 1.0.
    '''
    cdict = {
        'red': [],
        'green': [],
        'blue': [],
        'alpha': []
    }

    # regular index to compute the colors
    reg_index = np.linspace(start, stop, 257)

    # shifted index to match the data
    shift_index = np.hstack([
        np.linspace(0.0, midpoint, 128, endpoint=False),
        np.linspace(midpoint, 1.0, 129, endpoint=True)
    ])

    for ri, si in zip(reg_index, shift_index):
        r, g, b, a = cmap(ri)

        cdict['red'].append((si, r, r))
        cdict['green'].append((si, g, g))
        cdict['blue'].append((si, b, b))
        cdict['alpha'].append((si, a, a))

    newcmap = matplotlib.colors.LinearSegmentedColormap(name, cdict)
    plt.register_cmap(cmap=newcmap)

    return newcmap

def plot_df(df, spread_shock, vol_shock):
    fig = plt.figure()
    ax = fig.gca(projection='3d')
    ## use smoothing spline on a finer grid
    f = SmoothBivariateSpline(df.vol_shock.values, df.spread_shock.values,
                              df.pv.values)
    xx, yy = np.meshgrid(vol_shock, spread_shock)
    surf = ax.plot_surface(xx, yy, f(vol_shock, spread_shock).T, cmap=cm.viridis)
    ax.set_xlabel("volatility shock")
    ax.set_ylabel("spread")
    ax.set_zlabel("PV")

def plot_color_map(df, spread_shock, vol_shock, attr="pv", path="."):

    val_date = df.index[0].date()

    #rows are spread, columns are volatility surface shift
    fig, ax = plt.subplots()
    series = df[attr]
    #Different ways to do a colormap: imshow and pcolormesh. using imshow here
    midpoint = 1 - series.max() / (series.max() + abs(series.min()))
    shifted_cmap = shiftedColorMap(cm.RdYlGn, midpoint=midpoint, name='shifted')

    chart = ax.imshow(series.values.reshape(spread_shock.size, vol_shock.size).T,
                      extent=(spread_shock.min(), spread_shock.max(),
                              vol_shock.min(), vol_shock.max()),
                      aspect='auto', interpolation='bilinear', cmap=shifted_cmap)

    ax.set_xlabel('Spread')
    ax.set_ylabel('Volatility shock')
    ax.set_title('{} of Trade on {}'.format(attr.title(), val_date))

    fig.colorbar(chart, shrink=.8)
    fig.savefig(os.path.join(path, "payer_swap_{}.png".format(val_date)))

def calc_delta_pnl(index, date_range, spread_shock):

    r = []
    index_obj = deepcopy(index)
    startingpv = -index_obj.clean_pv
    spread_start = index_obj.spread

    for date in date_range:
        index_obj.trade_date = date.date()
        for ss in spread_shock:
            index_obj.spread = spread_start * (1 + ss)
            index_obj._update()
            scen_pv = -index_obj.clean_pv + index_obj.notional * (date.date()-trade_date).days/360* index_obj.fixed_rate/10000 - startingpv
            r.append([date, index_obj.spread, scen_pv])

    df = pd.DataFrame.from_records(r, columns=['date', 'spread_shock', 'pv'])

    return df.set_index('date')

trade_date = datetime.date(2017, 2, 23)
ig27 = Index.from_name("IG", 27, '5yr', trade_date=trade_date)
ig27.ref = 62
ig27.notional = 13000000
payer1 = BlackSwaption(ig27, datetime.date(2017, 4, 19), 65)
payer2 = BlackSwaption(ig27, datetime.date(2017, 5, 17), 72)
payer1.notional = 100e6
payer2.notional = 100e6
date_range = pd.bdate_range(trade_date, pd.Timestamp('2017-04-19') - BDay(), freq = '5B')
vol_shock = np.arange(-0.15, 0.3, 0.01)
spread_shock = np.arange(-0.2, 0.3, 0.01)
vs = VolatilitySurface("IG", 27, trade_date=trade_date)
vol_surface = vs[vs.list()[-1]]

df1 = run_swaption_scenarios(payer1, date_range, spread_shock, vol_shock, vol_surface)
df2 = run_swaption_scenarios(payer2, date_range, spread_shock, vol_shock, vol_surface)

df3 = calc_delta_pnl(ig27, date_range, spread_shock)

#plot it
week = -1
df = df1
df = df.assign(pv=df1.pv-df2.pv)
spread_plot_range = ig27.ref * (1 + np.arange(-0.2, 0.3, 0.001))
plot_df(df.loc[date_range[week]], spread_plot_range, np.arange(-0.15, 0.3, 0.001))
plot_color_map(df.loc[date_range[week]], ig27.ref *(1 + spread_shock),
               vol_shock)