1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
|
import sys
#don't do this at home
sys.path.append("..")
from analytics import Swaption, BlackSwaption, Index, VolatilitySurface, Portfolio
from analytics.scenarios import run_swaption_scenarios, run_index_scenarios, run_portfolio_scenarios
from pandas.tseries.offsets import BDay
import datetime
import numpy as np
import pandas as pd
from scipy.interpolate import SmoothBivariateSpline
from matplotlib import cm
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from operator import attrgetter
import os
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import AxesGrid
import re
from db import dbengine
engine = dbengine('serenitasdb')
def shiftedColorMap(cmap, start=0, midpoint=0.5, stop=1.0, name='shiftedcmap'):
'''
Function to offset the "center" of a colormap. Useful for
data with a negative min and positive max and you want the
middle of the colormap's dynamic range to be at zero
Input
-----
cmap : The matplotlib colormap to be altered
start : Offset from lowest point in the colormap's range.
Defaults to 0.0 (no lower ofset). Should be between
0.0 and `midpoint`.
midpoint : The new center of the colormap. Defaults to
0.5 (no shift). Should be between 0.0 and 1.0. In
general, this should be 1 - vmax/(vmax + abs(vmin))
For example if your data range from -15.0 to +5.0 and
you want the center of the colormap at 0.0, `midpoint`
should be set to 1 - 5/(5 + 15)) or 0.75
stop : Offset from highets point in the colormap's range.
Defaults to 1.0 (no upper ofset). Should be between
`midpoint` and 1.0.
'''
cdict = {
'red': [],
'green': [],
'blue': [],
'alpha': []
}
# regular index to compute the colors
reg_index = np.linspace(start, stop, 257)
# shifted index to match the data
shift_index = np.hstack([
np.linspace(0.0, midpoint, 128, endpoint=False),
np.linspace(midpoint, 1.0, 129, endpoint=True)
])
for ri, si in zip(reg_index, shift_index):
r, g, b, a = cmap(ri)
cdict['red'].append((si, r, r))
cdict['green'].append((si, g, g))
cdict['blue'].append((si, b, b))
cdict['alpha'].append((si, a, a))
newcmap = matplotlib.colors.LinearSegmentedColormap(name, cdict)
plt.register_cmap(cmap=newcmap)
return newcmap
def plot_df(df, spread_shock, vol_shock, attr="pnl"):
val_date = df.index[0].date()
fig = plt.figure()
ax = fig.gca(projection='3d')
## use smoothing spline on a finer grid
series = df[attr]
f = SmoothBivariateSpline(df.vol_shock.values, df.spread_shock.values, series.values)
xx, yy = np.meshgrid(vol_shock, spread_shock)
surf = ax.plot_surface(xx, yy, f(vol_shock, spread_shock).T, cmap=cm.viridis)
ax.set_xlabel("Volatility shock")
ax.set_ylabel("Spread")
ax.set_zlabel("PnL")
ax.set_title('{} of Trade on {}'.format(attr.title(), val_date))
def plot_color_map(df, spread_shock, vol_shock, attr="pnl", path=".", index ='IG'):
val_date = df.index[0].date()
#rows are spread, columns are volatility surface shift
fig, ax = plt.subplots()
#We are plotting an image, so we have to sort from high to low on the Y axis
ascending = [False,False] if index == 'HY' else [True,False]
df.sort_values(by=['spread','vol_shock'], ascending = ascending, inplace = True)
series = df[attr]
midpoint = 1 - series.max() / (series.max() + abs(series.min()))
shifted_cmap = shiftedColorMap(cm.RdYlGn, midpoint=midpoint, name='shifted')
chart = ax.imshow(series.values.reshape(spread_shock.size, vol_shock.size).T,
extent=(spread_shock.min(), spread_shock.max(),
vol_shock.min(), vol_shock.max()),
aspect='auto', interpolation='bilinear', cmap=shifted_cmap)
ax.set_xlabel('Price') if index == 'HY' else ax.set_xlabel('Spread')
ax.set_ylabel('Volatility shock')
ax.set_title('{} of Trade on {}'.format(attr.title(), val_date))
fig.colorbar(chart, shrink=.8)
#fig.savefig(os.path.join(path, "vol_spread_color_map"+ attr+ "_{}.png".format(val_date)))
def plot_time_color_map(df, spread_shock, attr="pnl", path=".", color_map=cm.RdYlGn, index='IG'):
val_date = df.index[0].date()
df = df.reset_index()
df['days'] = (df['date'] - val_date).dt.days
ascending = [True,True] if index == 'HY' else [True,False]
df.sort_values(by=['date','spread'], ascending = ascending, inplace = True)
date_range = df.days.unique()
#plt.style.use('seaborn-whitegrid')
fig, ax = plt.subplots()
series = df[attr]
midpoint = 1 - series.max() / (series.max() + abs(series.min()))
shifted_cmap = shiftedColorMap(color_map, midpoint=midpoint, name='shifted')
chart = ax.imshow(series.values.reshape(date_range.size, spread_shock.size).T,
extent=(date_range.min(), date_range.max(),
spread_shock.min(), spread_shock.max()),
aspect='auto', interpolation='bilinear', cmap=shifted_cmap)
#chart = ax.contour(date_range, spread_shock, series.values.reshape(date_range.size, spread_shock.size).T)
ax.set_xlabel('Days')
ax.set_ylabel('Price') if index == 'HY' else ax.set_ylabel('Spread')
ax.set_title('{} of Trade'.format(attr.title()))
fig.colorbar(chart, shrink=.8)
#fig.savefig(os.path.join(path, "spread_time_color_map_"+ attr+ "_{}.png".format(val_date)))
def plot_trade_scenarios(portf, shock_min=-.15, shock_max=.2):
portf.reset_pv()
earliest_date = min(portf.swaptions,key=attrgetter('exercise_date')).exercise_date
date_range = pd.bdate_range(portf.indices[0].trade_date, earliest_date - BDay(), freq = '5B')
vol_shock = np.arange(-0.15, 0.3, 0.01)
spread_shock = np.arange(shock_min, shock_max, 0.01)
index = portf.indices[0].name.split()[1]
series = portf.indices[0].name.split()[3][1:]
vs = VolatilitySurface(index, series, trade_date=portf.indices[0].trade_date)
vol_select = vs.list(option_type='payer', model='black')[-1]
vol_surface = vs[vol_select]
df = run_portfolio_scenarios(portf, date_range, spread_shock, vol_shock, vol_surface,
params=["pnl","delta"], vol_time_roll=True)
hy_plot_range = 100 + (500 - portf.indices[0].spread * (1 + spread_shock)) * \
abs(portf.indices[0].DV01) / portf.indices[0].notional * 100
shock = hy_plot_range if index == 'HY' else portf.indices[0].spread * (1 + spread_shock)
period = -4
plot_time_color_map(df[round(df.vol_shock,2)==0], shock, 'pnl', index=index)
plot_time_color_map(df[round(df.vol_shock,2)==0], shock, 'delta', color_map = cm.coolwarm_r, index=index)
plot_color_map(df.loc[date_range[period]], shock, vol_shock, 'pnl', index=index)
#plot_df(df.loc[date_range[period]], shock, vol_shock)
def exercise_probability():
from analytics import Swaption, BlackSwaption, Index, VolatilitySurface, Portfolio
from analytics.scenarios import run_swaption_scenarios, run_index_scenarios, run_portfolio_scenarios
import datetime
from operator import attrgetter
import exploration.swaption_calendar_spread as spread
import sys
#don't do this at home
from pandas.tseries.offsets import BDay
import datetime
import numpy as np
import pandas as pd
from scipy.interpolate import SmoothBivariateSpline
from matplotlib import cm
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from operator import attrgetter
import os
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import AxesGrid
import re
from db import dbengine
engine = dbengine('serenitasdb')
#import swaption_calendar_spread as spread
#Ad hoc
option_delta = Index.from_name('HY', 28, '5yr')
option_delta.price = 107.625
option1 = BlackSwaption(option_delta, datetime.date(2017, 9, 20), 107, option_type="payer")
option2 = BlackSwaption(option_delta, datetime.date(2017, 9, 20), 105, option_type="payer")
option1.sigma = .270
option2.sigma = .3625
option1.notional = 20_000_000
option2.notional = 40_000_000
option1.direction = 'Long'
option2.direction = 'Short'
option_delta.notional = -2000000
#option_delta.notional = option_delta.notional - option_delta2.notional
if option_delta.notional < 0:
option_delta.direction = 'Seller'
option_delta.notional = abs(option_delta.notional)
portf = Portfolio([option1, option2, option_delta])
portf.reset_pv()
earliest_date = min(portf.swaptions,key=attrgetter('exercise_date')).exercise_date
date_range = pd.bdate_range(portf.indices[0].trade_date, earliest_date - BDay(), freq = '5B')
vol_shock = np.arange(-0.15, 0.3, 0.01)
spread_shock = np.arange(-0.15, 0.35, 0.01)
index = portf.indices[0].name.split()[1]
series = portf.indices[0].name.split()[3][1:]
vs = VolatilitySurface(index, series, trade_date=portf.indices[0].trade_date)
vol_select = vs.list(option_type='payer', model='black')[-1]
vol_surface = vs[vol_select]
prob = vs.prob_surf(vol_select)
vs.prob_plot(vol_select)
|