1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
|
import sys
sys.path.append("..")
from graphics import plot_time_color_map
import analytics.tranche_functions as tch
import analytics.tranche_basket as bkt
import analytics.basket_index as idx_bkt
import numpy as np
import pandas as pd
from analytics import Swaption, BlackSwaption, Index, BlackSwaptionVolSurface, Portfolio
from analytics.scenarios import run_swaption_scenarios, run_index_scenarios, run_portfolio_scenarios
import exploration.swaption_calendar_spread as spread
from scipy.interpolate import interp1d
from datetime import date
from db import dbengine
engine = dbengine('serenitasdb')
def rv_calc1():
#let's do IG27 from IG29, need to get the quotes from risk_numbers_new not just random ones
#Get IG29-1 year shortened rho with TLP, compare to IG27 5y rho
index = 'IG'
series = 29
series2 = series -2
tenor = '5yr'
shortened = 4
method = 'TLP'
#Read existing results, find which ones need to run
try:
results = pd.read_csv(f"/home/serenitas/edwin/Python/rv_{index}{series}.csv",
parse_dates=['date'], index_col=['date'])
except IOError:
results = pd.DataFrame()
sql_string = "select distinct date from risk_numbers_new where index = %s and series = %s order by date desc"
df = pd.read_sql_query(sql_string, engine, params=(index, series), parse_dates=['date'])
df1 = pd.read_sql_query(sql_string, engine, params=(index, series2), parse_dates=['date'])
df = df.merge(df1, on=['date'])
df = df[~df.date.isin(results.index)]
rho_tlp, pv_tlp, rho_prev_index, pv_prev_index = [], [], [], []
tranche = bkt.TrancheBasket('IG', series, '5yr')
tranche2 = bkt.TrancheBasket('IG', series2, '5yr')
for trade_date in df.date:
tranche.trade_date = trade_date
tranche2.trade_date = trade_date
tranche.build_skew()
tranche.rho = tranche.map_skew(tranche, method, 4)
pv = tranche.tranche_pvs().bond_price
rho_tlp.append(tranche.rho[1:-1])
pv_tlp.append(pv)
tranche2.build_skew()
rho_prev_index.append(tranche2.rho[1:-1])
tranche.rho = tranche2.rho
pv = tranche.tranche_pvs(shortened=4).bond_price
pv_prev_index.append(pv)
temp1 = pd.DataFrame(rho_tlp, index=df.date, columns=['3_rho_tlp','7_rho_tlp','15_rho_tlp'])
temp2 = pd.DataFrame(pv_tlp, index=df.date, columns=['03_pv_tlp','37_pv_tlp','715_pv_tlp','15100_pv_tlp'])
temp3 = pd.DataFrame(rho_prev_index, index=df.date, columns=['3_rho_ig27','7_rho_ig27','15_rho_ig27'])
temp4 = pd.DataFrame(pv_prev_index, index=df.date, columns=['03_pv_ig27','37_pv_ig27','715_pv_ig27','15100_pv_ig27'])
results = results.append(pd.concat([temp1, temp2, temp3, temp4], axis=1))
result.to_csv("/home/serenitas/edwin/Python/rv_" + index + series + ".csv")
def dispersion():
from quantlib.time.api import Schedule, Rule, Date, Period, WeekendsOnly
from quantlib.settings import Settings
curves = {}
maturities = {}
settings = Settings()
for series in [24, 25, 26, 27, 28, 29]:
index_temp = idx_bkt.MarkitBasketIndex('IG', series, ["5yr",], trade_date=trade_date)
maturities[series] = index_temp.maturities[0]
cds_schedule = Schedule.from_rule(settings.evaluation_date, Date.from_datetime(maturities[series]),
Period('3M'), WeekendsOnly(), date_generation_rule=Rule.CDS2015)
sm, tickers = index_temp.survival_matrix(cds_schedule.to_npdates().view('int') + 134774)
curves[series] = pd.DataFrame(1 - sm, index=tickers, columns=cds_schedule)
#temp = (pd.to_datetime(maturities[series]) - datetime.datetime(1970,1,1)).days + 134774
#curves[series] = pd.concat([c.to_series() for _,_, c in index_temp.items()], axis=1)
curve_df = pd.concat(curves).stack()
curve_df.index.rename(['series', 'maturity', 'name'], inplace=True)
disp = {}
for series in [24, 25, 26, 27, 28, 29]:
temp = curve_df.xs([series, maturities[series].strftime('%Y-%m-%d')])
temp = temp[pd.qcut(temp, 10, labels=False) == 9]
disp[series] = temp.std()/temp.mean()
dispersion = pd.concat(disp)
curve_df.groupby(['series', 'maturity']).mean()
curve_df.groupby(['series', 'maturity']).std()
def scenarios(tranche, shock_range=None, roll_corr=False):
from copy import deepcopy
tranche.build_skew()
orig_tranche_cl, _, orig_tranche_pv = tranche.tranche_pvs()
if shock_range is None:
shock, step = 1, 10
shock_range = (1 + np.linspace(-.3, shock, step)) * tranche.tranche_quotes.indexrefspread[0]
#create empty lists
shock_index_pv_calc = np.empty(len(shock_range))
shock_tranche_pv = np.empty((len(shock_range), tranche.K.size - 1))
shock_tranche_delta = np.empty((len(shock_range), tranche.K.size - 1))
shock_tranche_cl = np.empty((len(shock_range), tranche.K.size - 1))
shock_tranche_carry = np.empty((len(shock_range), tranche.K.size - 1))
results = pd.DataFrame()
for shortened in [0,1,2]:
temp_tranche = deepcopy(tranche)
if shortened > 0:
temp_tranche.cs = temp_tranche.cs[:-shortened]
for i, shock in enumerate(shock_range):
temp_tranche.tweak(shock)
if roll_corr is True:
temp_tranche.rho = tranche.map_skew(temp_tranche, 'TLP')
shock_index_pv_calc[i] = temp_tranche._snacpv(shock * 1e-4, temp_tranche.coupon(temp_tranche.maturity), temp_tranche.recovery)
shock_tranche_cl[i], _, shock_tranche_pv[i] = temp_tranche.tranche_pvs()
shock_tranche_delta[i] = temp_tranche.tranche_deltas()['delta']
shock_tranche_carry[i] = temp_tranche.tranche_quotes.running
temp1 = pd.DataFrame(shock_tranche_pv, index=shock_range, columns=[s + "_pv" for s in tranche._row_names])
temp2 = pd.DataFrame(shock_tranche_delta, index=shock_range, columns=[s + "_delta" for s in tranche._row_names])
temp3 = pd.DataFrame(np.subtract(shock_tranche_pv, orig_tranche_pv), index=shock_range, columns=[s + "_pnl" for s in tranche._row_names])
temp4 = pd.DataFrame(shock_index_pv_calc, index=shock_range, columns=['index_price_snacpv'])
temp5 = pd.DataFrame(shock_tranche_carry, index=shock_range, columns=[s + "_carry" for s in tranche._row_names])
#temp5 = pd.DataFrame(np.subtract(shock_tranche_cl, orig_tranche_cl), index=shock_range, columns=[s + "_coupon_pnl" for s in tranche._row_names])
df = pd.concat([temp1, temp2, temp3, temp4, temp5], axis=1)
if shortened > 0:
df['days'] = ((tranche.cs.index[-1] - tranche.cs.index[-shortened-1])/ np.timedelta64(1, 'D')).astype(int)
else:
df['days'] = 0
for column in [s + "_carry" for s in tranche._row_names]:
df[column] *= df['days']/365
results = results.append(df)
return results
def run_scen(trade_date = pd.Timestamp.today().normalize()- pd.offsets.BDay()):
option_delta = Index.from_tradeid(910)
option1 = BlackSwaption.from_tradeid(13, option_delta)
option2 = BlackSwaption.from_tradeid(12, option_delta)
portf = Portfolio([option1, option2, option_delta])
#Start with swaptions
portf.reset_pv()
portf.mark()
earliest_date = min(portf.swaptions, key=lambda x: x.exercise_date).exercise_date
#date_range = pd.bdate_range(portf.indices[0].trade_date, earliest_date - BDay(), freq = '3B')
date_range = pd.date_range(trade_date, periods=4, freq = '5B')
vol_shock = np.arange(-0.01, 0.01, 0.01)
shock_min=-.3
shock_max=.8
spread_shock = np.arange(shock_min, shock_max, 0.05)
index = portf.indices[0].name.split()[1]
series = portf.indices[0].name.split()[3][1:]
vs = BlackSwaptionVolaSurface(index, series, trade_date=trade_date)
vol_surface = vs[vs.list(option_type='payer')[-1]]
df = run_portfolio_scenarios(portf, date_range, spread_shock, vol_shock, vol_surface,
params=["pnl","delta"])
df = df[df.vol_shock == 0]
df['days'] = ((df.index - trade_date)/ np.timedelta64(1, 'D')).astype(int)
#now do the tranches
tranche = bkt.TrancheBasket('IG', 29, '5yr', trade_date=trade_date)
shock_range = (1 + spread_shock) * portf.indices[0].spread
results = scenarios(tranche, shock_range, date_range)
results.set_index('days', append=True)
notional = 10000000
results['delta'] = -notional * (results['0-3_delta'] - 6* results['7-15_delta'])
results['pnl'] = notional* (results['0-3_pnl'] + results['0-3_carry'] - 6* (results['7-15_pnl'] + results['7-15_carry']))
results['date'] = tranche.trade_date + results.days * pd.offsets.Day()
results.index.name = 'spread'
#now combine the results
f = {}
for i, g in results.groupby('spread'):
f[i] = interp1d(g.days, g.pnl)
df['total_pnl'] = df.apply(lambda df: f[df.spread](df.days), axis = 1)
df.total_pnl = df.total_pnl.astype(float)
return results, df, shock_range
def plot_pnl():
a, b, shock_range = run_scen()
a.reset_index(inplace=True)
a.set_index('date', inplace=True)
#plot Tranche only PNL
plot_time_color_map(a, shock_range, attr="pnl")
#plot swaption only PNL
plot_time_color_map(b, shock_range, attr="pnl")
#plot Tranche and Swaption PNL
plot_time_color_map(b, shock_range, attr="total_pnl")
|