aboutsummaryrefslogtreecommitdiffstats
path: root/python/exploration/tranches.py
blob: 7b47582155a89fd58eaf0230fc7f81b83c722c56 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import sys
sys.path.append("..")
from graphics import plot_time_color_map
import analytics.tranche_functions as tch
import analytics.tranche_basket as bkt
import analytics.basket_index as idx_bkt
import numpy as np
import pandas as pd

from analytics import Swaption, BlackSwaption, Index, BlackSwaptionVolSurface, Portfolio
from analytics.scenarios import run_swaption_scenarios, run_index_scenarios, run_portfolio_scenarios, run_tranche_scenarios
import exploration.swaption_calendar_spread as spread
from scipy.interpolate import interp1d

from datetime import date
from db import dbengine
engine  = dbengine('serenitasdb')

def rv_calc1():
    #let's do IG27 from IG29, need to get the quotes from risk_numbers_new not just random ones
    #Get IG29-1 year shortened rho with TLP, compare to IG27 5y rho
    index = 'IG'
    series = 29
    series2 = series -2
    tenor = '5yr'
    shortened = 4
    method = 'TLP'

    #Read existing results, find which ones need to run
    try:
        results = pd.read_csv(f"/home/serenitas/edwin/Python/rv_{index}{series}.csv",
                              parse_dates=['date'], index_col=['date'])
    except IOError:
        results = pd.DataFrame()
    sql_string = "select distinct date from risk_numbers_new where index = %s and series = %s order by date desc"
    df = pd.read_sql_query(sql_string, engine, params=(index, series), parse_dates=['date'])
    df1 = pd.read_sql_query(sql_string, engine, params=(index, series2), parse_dates=['date'])
    df = df.merge(df1, on=['date'])
    df = df[~df.date.isin(results.index)]

    rho_tlp, pv_tlp, rho_prev_index, pv_prev_index = [], [], [], []

    tranche = bkt.TrancheBasket('IG', series, '5yr')
    tranche2 = bkt.TrancheBasket('IG', series2, '5yr')

    for trade_date in df.date:
        tranche.trade_date = trade_date
        tranche2.trade_date = trade_date
        tranche.build_skew()
        tranche.rho = tranche.map_skew(tranche, method, 4)
        pv = tranche.tranche_pvs().bond_price
        rho_tlp.append(tranche.rho[1:-1])
        pv_tlp.append(pv)

        tranche2.build_skew()
        rho_prev_index.append(tranche2.rho[1:-1])

        tranche.rho = tranche2.rho
        pv = tranche.tranche_pvs(shortened=4).bond_price
        pv_prev_index.append(pv)

    temp1 = pd.DataFrame(rho_tlp, index=df.date, columns=['3_rho_tlp', '7_rho_tlp', '15_rho_tlp'])
    temp2 = pd.DataFrame(pv_tlp, index=df.date, columns=['03_pv_tlp', '37_pv_tlp', '715_pv_tlp', '15100_pv_tlp'])
    temp3 = pd.DataFrame(rho_prev_index, index=df.date, columns=['3_rho_ig27', '7_rho_ig27', '15_rho_ig27'])
    temp4 = pd.DataFrame(pv_prev_index, index=df.date, columns=['03_pv_ig27', '37_pv_ig27', '715_pv_ig27', '15100_pv_ig27'])

    results = results.append(pd.concat([temp1, temp2, temp3, temp4], axis=1))

    result.to_csv("/home/serenitas/edwin/Python/rv_" + index + series + ".csv")

def dispersion():

    from quantlib.time.api import Schedule, Rule, Date, Period, WeekendsOnly
    from quantlib.settings import Settings

    curves = {}
    maturities = {}
    settings = Settings()
    for series in [24, 25, 26, 27, 28, 29]:
        index_temp = idx_bkt.MarkitBasketIndex('IG', series, ["5yr",], trade_date=trade_date)
        maturities[series] = index_temp.maturities[0]
        cds_schedule = Schedule.from_rule(settings.evaluation_date, Date.from_datetime(maturities[series]),
                                      Period('3M'), WeekendsOnly(), date_generation_rule=Rule.CDS2015)
        sm, tickers = index_temp.survival_matrix(cds_schedule.to_npdates().view('int') + 134774)
        curves[series] = pd.DataFrame(1 - sm, index=tickers, columns=cds_schedule)
        #temp = (pd.to_datetime(maturities[series]) - datetime.datetime(1970,1,1)).days + 134774
        #curves[series] = pd.concat([c.to_series() for _,_, c in index_temp.items()], axis=1)
    curve_df = pd.concat(curves).stack()
    curve_df.index.rename(['series', 'maturity', 'name'], inplace=True)
    disp = {}
    for series in [24, 25, 26, 27, 28, 29]:
        temp = curve_df.xs([series, maturities[series].strftime('%Y-%m-%d')])
        temp = temp[pd.qcut(temp, 10, labels=False) == 9]
        disp[series] = temp.std()/temp.mean()
    dispersion = pd.concat(disp)
    curve_df.groupby(['series', 'maturity']).mean()
    curve_df.groupby(['series', 'maturity']).std()

def run_scen(portf, tranche, spread_shock):

    #Start with swaptions
    earliest_expiry = min(portf.swaptions, key=lambda x: x.exercise_date).exercise_date
    date_range = pd.bdate_range(portf.indices[0].trade_date,
                                earliest_expiry - pd.offsets.BDay(), freq='5B')
    vs = BlackSwaptionVolSurface(portf.indices[0].index_type,
                                portf.indices[0].series, trade_date=portf.indices[0].trade_date)
    vol_surface = vs[vs.list(option_type='payer')[-1]]
    df = run_portfolio_scenarios(portf, date_range, spread_shock, np.array([0]),
                                vol_surface, params=["pnl", "delta"])

    #now do the tranches
    spread_range = (1+ spread_shock) * portf.indices[0].spread
    results = run_tranche_scenarios(tranche, spread_range, date_range)
    results.date = pd.to_datetime(results.date)
    notional = 10000000
    results['delta_tranche'] = -notional * (results['0-3_delta'] - 6* results['7-15_delta'])
    results['pnl_tranche'] = notional * (results['0-3_pnl'] + results['0-3_carry'] -
                         6* (results['7-15_pnl'] + results['7-15_carry']))
    results.index.name = 'spread'

    #combine
    df = df.reset_index().merge(results.reset_index(), on=['date', 'spread'])
    df['final_pnl'] = df.pnl_tranche + df.pnl
    df['final_delta'] = df.delta_tranche + df.delta

    return df

def set_port():

    #Construct Portfolio
    option_delta = Index.from_name('IG', 30, '5yr')
    option_delta.spread = 59

    option1 = BlackSwaption(option_delta, date(2018, 6, 20), 80, option_type="payer")
    option1.sigma = .621
    option1.direction = 'Short'

    option1.notional = 150_000_000
    option_delta.notional = 1

    portf = Portfolio([option1, option_delta])
    portf.reset_pv()
    trade_date = (pd.datetime.today() - pd.offsets.BDay(1)).normalize()
    tranche = bkt.TrancheBasket('IG', 29, '5yr', trade_date=trade_date)

    return portf, tranche

def set_df():

    portf, tranche = set_port()

    shock_min = -.3
    shock_max = .8
    spread_shock = np.arange(shock_min, shock_max, 0.05)
    shock_range = (1+ spread_shock) * portf.indices[0].spread

    results = run_scen(portf, tranche, spread_shock)
    results = results.set_index('date')
    return results, shock_range

def plot_scenarios():

    df, shock_range = set_df()
    plot_time_color_map(df, shock_range, attr="final_pnl")
    plot_time_color_map(df, shock_range, attr="final_delta", color_map= 'rainbow', centered = False)