1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
|
import datetime
import pandas as pd
import re
from env import DAILY_DIR
def gs_navs(date: datetime.date = None):
d = {}
date_str = date.strftime("%d_%b_%Y") if date else ""
for fname in (DAILY_DIR / "GS_reports").glob(f"Trade_Detail*{date_str}*.xls"):
try:
df = pd.read_excel(fname, skiprows=9, skipfooter=77, index_col="Trade Id")
except ValueError:
continue
df["Trade Date"] = pd.to_datetime(df["Trade Date"])
df = df[["Trade Date", "Buy/Sell", "Notional (USD)", "NPV (USD)"]]
df.columns = ["trade_date", "buy/sell", "notional", "nav"]
name = fname.name.replace("9972734", "")
m = re.match(r"[^\d]*(\d{2}_.{3}_\d{4})", name)
if m:
date_string, = m.groups()
date = datetime.datetime.strptime(date_string, "%d_%b_%Y")
d[date] = df
df = pd.concat(d)
# nav is from Goldman's point of view
df.nav *= -1.0
return df
def ms_navs(date: datetime.date = None):
d = {}
date_str = date.strftime("%Y%m%d") if date else "*"
for fname in (DAILY_DIR / "MS_reports").glob(f"Trade_Detail_{date_str}.xls"):
df = pd.read_excel(fname, index_col="trade_id")
df.trade_date = pd.to_datetime(df.trade_date)
df = df[
["trade_date", "pay_rec", "notional_in_trade_ccy", "exposure_in_rpt_ccy"]
]
df.columns = ["trade_date", "buy/sell", "notional", "nav"]
m = re.match(r"[^\d]*(\d{8})", fname.name)
if m:
date_string, = m.groups()
date = datetime.datetime.strptime(date_string, "%Y%m%d")
d[date] = df
return pd.concat(d)
def citi_navs(date: datetime.date = None):
d = {}
glob_str = date.strftime("%Y%m%d*") if date else "*"
for fname in (DAILY_DIR / "CITI_reports").glob(f"262966_Portfolio_{glob_str}.xlsx"):
date_parsed = datetime.datetime.strptime(
fname.stem.rsplit("_", 1)[1][:-3], "%Y%m%d%H%M%S%f"
)
df = pd.read_excel(
fname, skiprows=6, skipfooter=2, parse_dates=["Trade Date", "Value Date"]
)
df = df.dropna(subset=["Operations File"]).set_index(
["Value Date", "Operations File"]
)
df = df[["Trade Date", "Party Position", "Notional", "Market Value"]]
df.columns = ["trade_date", "buy/sell", "notional", "nav"]
d[date_parsed] = df
# there can be multiple files per day, we take the latest one
df = (
pd.concat(d)
.sort_index()
.groupby(level=["Value Date", "Operations File"])
.last()
)
# nav is from Citi's point of view
df.nav *= -1.0
return df
def baml_navs(date: datetime.date = None):
d = {}
glob_str = date.strftime("%d-%b-%Y") if date else "*"
for fname in (DAILY_DIR / "BAML_ISDA_reports").glob(
f"Interest Rates Trade Summary_{glob_str}.xls"
):
date = datetime.datetime.strptime(fname.stem.split("_")[1], "%d-%b-%Y")
df = pd.read_excel(fname, skiprows=6, nrows=1)
df = df.set_index("Trade ID")
df = df[["Trade Date", "Flow Direction", "Notional", "MTM(USD)"]]
df.columns = ["trade_date", "buy/sell", "notional", "nav"]
d[date] = df
return pd.concat(d)
if __name__ == "__main__":
import argparse
from utils.db import dbconn
from pandas.tseries.offsets import BDay
parser = argparse.ArgumentParser()
parser.add_argument(
"date",
type=datetime.datetime.fromisoformat,
nargs="?",
default=datetime.date.today(),
)
parser.add_argument(
"-a", "--all", action="store_true", default=False, help="download everything"
)
args = parser.parse_args()
date = None if args.all else args.date
for cp in ["MS", "CITI", "GS", "BAML"]:
if cp != "CITI":
date_arg = (date - BDay()).date()
else:
date_arg = date
df = globals()[f"{cp.lower()}_navs"](date_arg)
print(df)
with dbconn("dawndb") as conn:
with conn.cursor() as c:
for k, v in df[["nav"]].iterrows():
c.execute(
"INSERT INTO external_marks_deriv "
"VALUES(%s, %s, %s, %s) ON CONFLICT DO NOTHING",
(*k, float(v), cp),
)
|