1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
|
import datetime
import pandas as pd
import re
from serenitas.utils.env import DAILY_DIR
from collateral.baml_isda import load_excel
from collateral.citi import load_pdf, get_col
from collateral.jpm import load_positions
from serenitas.analytics.dates import next_business_day, prev_business_day
from serenitas.analytics.utils import get_fx
# local_nav is the nav in the trade's own currency
COLUMNS = ["trade_date", "buy/sell", "notional", "local_nav", "base_nav", "ia"]
def gs_navs(date: datetime.date = None, fund: str = "Serenitas"):
d = {}
date_str = date.strftime("%d_%b_%Y") if date else ""
for fname in (DAILY_DIR / fund / "GS_reports").glob(
f"Trade_Detail*{date_str}*.xls"
):
try:
df = pd.read_excel(fname, skiprows=9, skipfooter=77, index_col="Trade Id")
except ValueError:
continue
df = df.dropna(subset=["GS Entity"])
df["Trade Date"] = pd.to_datetime(df["Trade Date"])
name = fname.name.replace("9972734", "")
if m := re.match(r"[^\d]*(\d{2}_.{3}_\d{4})", name):
(date_string,) = m.groups()
date = datetime.datetime.strptime(date_string, "%d_%b_%Y").date()
df["fx"] = df["Not1Ccy"].apply(lambda s: get_fx(date, s))
df["local_navs"] = df["NPV (USD)"] / df["fx"]
df = df[
[
"Trade Date",
"Buy/Sell",
"Notional (USD)",
"local_navs",
"NPV (USD)",
"Initial Margin Required",
]
]
df.columns = COLUMNS
d[date] = df
if d:
df = pd.concat(d)
# nav is from Goldman's point of view
df[["local_nav", "base_nav"]] *= -1.0
else:
df = pd.DataFrame(columns=COLUMNS)
return df
def ms_navs(date: datetime.date = None, fund: str = "Serenitas"):
d = {}
date_str = date.strftime("%Y%m%d") if date else "*"
for fname in (DAILY_DIR / fund / "MS_reports").glob(f"Trade_Detail_{date_str}.xls"):
df = pd.read_excel(fname, index_col="trade_id")
df.trade_date = pd.to_datetime(df.trade_date)
df = df[
[
"trade_date",
"pay_rec",
"notional_in_trade_ccy",
"exposure_in_rpt_ccy",
"exposure_in_rpt_ccy",
"upfront_in_rpt_ccy",
]
]
df.columns = COLUMNS
df.ia *= -1.0
if m := re.match(r"[^\d]*(\d{8})", fname.name):
(date_string,) = m.groups()
date = datetime.datetime.strptime(date_string, "%Y%m%d")
d[date] = df
if d:
df = pd.concat(d)
else:
df = pd.DataFrame(columns=COLUMNS)
return df
def citi_navs(date: datetime.date = None, **kwargs):
date = next_business_day(date)
dfs = []
glob_str = f"{date:%Y%m%d}*" if date else "*"
for fname in (DAILY_DIR / "CITI_reports").glob(f"262966_Portfolio_{glob_str}.xlsx"):
df = pd.read_excel(
fname, skiprows=6, skipfooter=2, parse_dates=["Trade Date", "Value Date"]
)
df = df.dropna(subset=["Operations File"]).set_index(
["Value Date", "Operations File"]
)
df = df[
[
"Trade Date",
"Party Position",
"Notional",
"Market Value",
"Market Value",
"BasicAmt",
]
]
df.columns = COLUMNS
dfs.append(df)
# there can be multiple files per day, we take the latest one
df = (
pd.concat(dfs)
.sort_index()
.groupby(level=["Value Date", "Operations File"])
.last()
)
# nav is from Citi's point of view
df[["local_nav", "base_nav"]] *= -1.0
return df
def baml_navs(date: datetime.date = None, fund: str = "Serenitas"):
dfs = []
glob_str = f"{next_business_day(date):%m%d%Y}" if date else "*"
match fund:
case "Serenitas":
tag = "TSLP"
case "BowdSt":
tag = "TLLC"
case "Selene":
tag = "INC"
case "Brinker":
tag = "BOGUS"
for fname in (DAILY_DIR / fund / "BoA_reports").glob(
f"301__LMCG_INVESTMEN{tag}_CSA_{glob_str}_*.xls"
):
df = load_excel(fname)
df = df.set_index(["Market Value Date", "Trade ID"])
df = df[
[
"Trade Date",
"Buy/Sell",
"Notional 1",
"local_nav",
"base_nav",
"ia",
]
]
df.columns = COLUMNS
dfs.append(df)
if dfs:
df = pd.concat(dfs)
else:
df = pd.DataFrame(columns=COLUMNS)
return df
def bnp_navs(date: datetime.date = None, fund: str = "Serenitas"):
d = {}
date_str = date.strftime("%Y%m%d") if date else ""
for fname in (DAILY_DIR / fund / "BNP_reports").glob(f"Exposure*{date_str}.XLS"):
try:
df = pd.read_excel(fname, skiprows=7)
except ValueError:
continue
df["Trade Ref"] = df["Trade Ref"].str.replace("(FOC-|MBO-)", "", regex=True)
df = df.set_index("Trade Ref")
df["Trade Date"] = pd.to_datetime(df["Trade Date"], dayfirst=True)
df["Exposure Amount"] = df["Exposure Amount"].where(
df["Notional 1 Ccy"] == "EUR", df["Exposure Amount (Agmt Ccy)"]
)
df = df[
[
"Trade Date",
"Buy/Sell",
"Notional 1",
"Exposure Amount",
"Exposure Amount (Agmt Ccy)",
"Lock Up (Agmt Ccy)",
]
]
df.columns = COLUMNS
d[datetime.datetime.strptime(fname.stem[-8:], "%Y%m%d").date()] = df
if d:
df = pd.concat(d)
# nav is from BNP's point of view
df[["local_nav", "base_nav"]] *= -1.0
else:
df = pd.DataFrame(columns=COLUMNS)
return df
def cs_navs_old(date: datetime.date = None, fund: str = "Serenitas"):
d = {}
DATA_DIR = DAILY_DIR / fund / "CS_reports"
glob_str = f"{date:%b%d%Y}" if date else "*"
g = DATA_DIR.glob(f"DERV048829_{glob_str}.xlsx")
for fname in g:
try:
df = pd.read_excel(fname, skiprows=9, skipfooter=50, thousands=",")
except ValueError:
continue
df["Mid Price"] = df["Mid Price"].apply(
lambda s: -float(s[1:-1].replace(",", ""))
if s.startswith("(") and s.endswith(")")
else float(s)
)
df["Order No"] = df["Order No"].astype("str")
df["Trade Date"] = pd.to_datetime(df["Trade Date"])
df = df.set_index("Order No")
df = df[["Trade Date", "Buy/Sell", "Notional", "Mid Price", "Mid Price"]]
df.columns = COLUMNS[:-1]
# TODO: fix this
df_ia = get_ia(date, fund)
df = df.join(df_ia)
d[datetime.datetime.strptime(fname.stem.split("_")[1], "%b%d%Y").date()] = df
if d:
df = pd.concat(d)
# nav is from CS's point of view
df[["local_nav", "base_nav"]] *= -1.0
else:
df = pd.DataFrame(columns=COLUMNS)
return df
def cs_navs(date: datetime.date = None, fund: str = "Serenitas"):
if date:
date = next_business_day(date)
glob_str = f"{date:%m%d%Y}"
else:
glob_str = "*"
d = {}
DATA_DIR = DAILY_DIR / fund / "CS_reports"
full_name = {
"Serenitas": "SerenitasCGMF",
"BowdSt": "BostonBPStLLC",
"Brinker": "",
"Selene": "",
}
g = DATA_DIR.glob(f"CollateralCptyStatement161{full_name[fund]}RVM_{glob_str}.xls")
for fname in g:
try:
df = pd.read_excel(fname, header=5, skipfooter=29)
except ValueError:
continue
if df.empty:
raise ValueError(f"CS: empty position statement for {date}")
df.columns = [c.replace("\n", " ").strip() for c in df.columns]
df = df[1:]
df = df.set_index("Structure ID")
df = df[
[
"Trade Date",
"Buy/Sell",
"Notional1",
"PV (USD)",
"PV (USD)",
"Initial Margin (USD)",
]
]
df.columns = COLUMNS
date = datetime.datetime.strptime(fname.stem.split("_")[1], "%m%d%Y").date()
d[prev_business_day(date)] = df
if d:
df = pd.concat(d)
# nav is from CS's point of view
df[["local_nav", "base_nav"]] *= -1.0
else:
df = pd.DataFrame(columns=COLUMNS)
return df
def jpm_navs(date: datetime.date = None, fund: str = "BowdSt"):
account = {"Serenitas": 923550, "BowdSt": 909271}
DATA_DIR = DAILY_DIR / fund / "JPM_reports"
if date:
glob_str = f"{date:%y%m%d}"
else:
glob_str = "*"
g = DATA_DIR.glob(f"CSCFTCSTMT-*-{glob_str}-{account.get(fund)}_2.pdf")
d = {}
for fname in g:
pages = load_pdf(fname, pages=True)
df = load_positions(pages[4])
date = datetime.datetime.strptime(fname.stem.split("-")[2], "%y%m%d").date()
df["fx"] = df["Pay CCY"].apply(lambda s: get_fx(date, s))
df["local_navs"] = df["MTM Amount"] / df["fx"]
df = df[
[
"Deal ID",
"Trade Date",
"Long/ Short",
"Pay Notional",
"local_navs",
"MTM Amount",
"IM Amount",
]
]
df = df.set_index("Deal ID")
df["IM Amount"] *= -1.0
df.columns = COLUMNS
d[date] = df
if d:
df = pd.concat(d)
else:
df = pd.DataFrame(columns=COLUMNS)
return df
def get_ia(date: datetime.date = None, fund: str = "Serenitas"):
date = next_business_day(date)
glob_str = f"{date:%m%d%Y}"
for fname in (DAILY_DIR / fund / "CS_reports").glob(
f"CollateralCptyStatement161SerenitasCGMFRVM_{glob_str}.pdf"
):
l = load_pdf(fname)
top, bottom = get_box_dimension(l)
trade_ids = get_col(l, top, bottom, 20, 70)
ia = get_col(l, top, bottom, 850, 1000)
df = pd.DataFrame({"trade_ids": trade_ids, "ia": ia})
df.ia = pd.to_numeric(df.ia.str.strip().str.replace(",", ""))
return df.set_index("trade_ids")
def get_box_dimension(l):
for e in l:
if e.text == "**CD Swaption":
top = int(e["top"])
if e.text == "**CD Swaption Total:":
bottom = int(e["top"])
return (top + 1, bottom - 1)
# def bnp_navs_old(date: datetime.date = None):
# d = {}
# date_str = date.strftime("%d%b%Y") if date else ""
# for fname in (DAILY_DIR / "BNP_reports").glob(f"SERENITAS*0_*{date_str}.csv"):
# try:
# df = pd.read_csv(fname)
# except ValueError:
# continue
# df = df.set_index("Contract")
# df["COB Date"] = pd.to_datetime(df["COB Date"])
# df = df[["COB Date", "B/S", "Notional", "Reval PV"]]
# df.columns = ["trade_date", "buy/sell", "notional", "nav"]
# d[datetime.datetime.strptime(fname.name.split("_")[3], "%d%b%Y").date()] = df
# df = pd.concat(d)
# return df
if __name__ == "__main__":
import argparse
import logging
from serenitas.utils.pool import dawn_pool
parser = argparse.ArgumentParser()
parser.add_argument(
"date",
type=datetime.datetime.fromisoformat,
nargs="?",
default=datetime.date.today(),
help="this is today's date, we load marks as of previous day cob",
)
parser.add_argument(
"-a", "--all", action="store_true", default=False, help="download everything"
)
parser.add_argument(
"-d", "--debug", action="store_true", default=False, help="more verbose logging"
)
args = parser.parse_args()
date = None if args.all else prev_business_day(args.date)
logging.basicConfig()
logger = logging.getLogger("external_marks")
logger.setLevel(logging.DEBUG if args.debug else logging.INFO)
for cp in ("MS", "CITI", "GS", "BAML", "BNP", "CS", "JPM"):
for fund in ("Serenitas", "Brinker", "BowdSt", "Selene"):
logger.info(f"{cp} at {fund}")
try:
df = globals()[f"{cp.lower()}_navs"](date, fund=fund)
except ValueError as e:
logger.error(e)
continue
if df.empty and cp == "CS":
df = globals()[f"{cp.lower()}_navs_old"](date, fund=fund)
logger.debug(df)
with dawn_pool.connection() as conn:
with conn.cursor() as c:
for k, v in df[["local_nav", "base_nav", "ia"]].iterrows():
c.execute(
"INSERT INTO external_marks_deriv "
"VALUES(%s, %s, %s, %s, %s, %s) "
"ON CONFLICT (identifier, date) "
"DO UPDATE SET local_nav=excluded.local_nav, "
"base_nav=excluded.base_nav, ia=excluded.ia",
(
*k,
float(v.local_nav),
float(v.base_nav),
cp,
float(v.ia),
),
)
|