aboutsummaryrefslogtreecommitdiffstats
path: root/python/globeop_reports.py
blob: 4562c60527b3466cf88e211ba5e92cbcf0098f52 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
from glob import iglob
from db import dbengine
from pandas.tseries.offsets import MonthEnd
from yieldcurve import YC

import os
import pandas as pd
import datetime
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import pandas.tseries.offsets as off


def get_monthly_pnl(group_by = ['identifier']):
    sql_string = "SELECT * FROM pnl_reports"
    df_pnl = pd.read_sql_query(sql_string, dbengine('dawndb'), parse_dates=['date'],
                               index_col=['date'])
    df_pnl['identifier'] = df_pnl.invid.str.replace("_A$", "")
    pnl_cols = ['bookunrealmtm', 'bookrealmtm', 'bookrealincome', 'bookunrealincome', 'totalbookpl']
    monthend_pnl = df_pnl.groupby(pd.Grouper(freq='M'), group_keys=False).apply(lambda df: df.loc[df.index[-1]])
    return monthend_pnl.groupby(['date'] + group_by)[['mtd' + col for col in pnl_cols]].sum()


def get_portfolio(report_date = None):
    if report_date is not None:
        sql_string = "SELECT * FROM valuation_reports where periodenddate = %s"
        df = pd.read_sql_query(sql_string, dbengine('dawndb'), parse_dates=['periodenddate'],
                               index_col=['periodenddate'], params=[report_date,])
    else:
        sql_string = "SELECT * FROM valuation_reports"
        df = pd.read_sql_query(sql_string, dbengine('dawndb'), parse_dates=['periodenddate'],
                               index_col=['periodenddate'])
    df['identifier'] = df.invid.str.replace("_A$", "")
    return df


def curr_port_PNL(date = datetime.date.today(), asset_class='Subprime'):
    date = (date - off.MonthEnd(1)).date()
    sql_string = "SELECT * FROM risk_positions(%s, %s) WHERE notional > 0"
    df_positions = pd.read_sql_query(sql_string, dbengine('dawndb'), params=[date, asset_class])
    df_pnl = get_monthly_pnl()[:date]
    df_all = df_positions.merge(df_pnl.groupby('identifier').sum().reset_index(), on=['identifier'])
    return df_all


def trade_performance():
    sql_string = "SELECT * FROM bonds"
    df_trades = pd.read_sql_query(sql_string, dbengine('dawndb'), parse_dates={'lastupdate': {'utc': True}, 'trade_date': {}, 'settle_date': {}})
    df_trades = df_trades[df_trades['asset_class'] == 'Subprime']
    df_pnl = get_monthly_pnl()

    df_sell = df_trades[df_trades.buysell == False].groupby('identifier').last().reset_index()
    df_sell.identifier = df_sell.identifier.str[:9]
    df_sell['trade_pnl_date'] = df_sell.trade_date + off.MonthEnd(0)
    df_buy = df_trades[df_trades.buysell == True].groupby('identifier').last().reset_index()

    df_all = df_sell.merge(df_pnl.groupby('identifier').sum().reset_index(), on=['identifier'])
    df_all = df_all.merge(df_pnl.reset_index()[['date', 'identifier', 'mtdtotalbookpl']],
                          left_on=['trade_pnl_date', 'identifier'],
                          right_on=['date', 'identifier'],
                          suffixes=('', '_at_trade_month'))
    df_all = df_all.drop(['date', 'trade_pnl_date'], axis=1)

    #now build up the table
    g = df_buy.groupby('identifier').sum()
    init_inv = g.principal_payment + g.accrued_payment
    init_inv.name = 'initialinvestment'

    first_buy_date = df_buy.groupby('identifier').first().trade_date
    first_buy_date.name = 'firstbuydate'

    df_all = df_all.join(init_inv, on='identifier')
    df_all = df_all.join(first_buy_date, on='identifier')
    df_all['percent_gain'] = df_all.mtdtotalbookpl / df_all.initialinvestment
    df_all['days_held'] = df_all.trade_date - df_all.firstbuydate

    df_all = df_all.sort_values('trade_date', ascending=False)

    return df_all


def get_net_navs():
    sql_string = "SELECT * FROM valuation_reports"
    df_val = pd.read_sql_query(sql_string, dbengine('dawndb'), parse_dates=['periodenddate'])
    nav = df_val[df_val.fund == 'SERCGMAST'].groupby('periodenddate')['endbooknav'].sum()
    nav = nav.resample('M').last()
    df = pd.read_csv('/home/serenitas/edwin/Python/subscription_fee_data.csv', parse_dates=['date'], index_col =['date'])
    df.index = df.index.to_period('M').to_timestamp('M')
    df = df.join(nav)
    df['begbooknav'] = (df.endbooknav + df.net_flow).shift(1)
    df.at[('2013-01-31', 'begbooknav')] = 12500000
    return df


def shift_cash(date, amount, df, strat):
    nav = get_net_navs()
    df.loc[date, strat] = df.loc[date, strat] - amount/nav.loc[date].endbooknav
    df.loc[date,'Cash'] = df.loc[date, 'Cash'] + amount/nav.loc[date].endbooknav
    return df


def calc_trade_performance_stats():
    df = trade_performance().set_index('trade_date')
    df.days_held = df.days_held.dt.days
    df['winners'] = df.apply(lambda df: True if df.percent_gain > 0 else False, axis = 1)
    df['curr_face'] = df.principal_payment/(df.price/100)

    index = ['All', '2017', '2016', '2015', '2014', '2013']
    results = pd.DataFrame(index = index)

    win_per = len(df[df.winners].index)/len(df)
    loss_per = 1- win_per
    temp = {}
    temp1 = {}
    for x, df1 in df.groupby('winners'):
        for y, df2 in df1.groupby(pd.Grouper(freq='A')):
            import pdb; pdb.set_trace()
            y = y.date().year
            results.loc[y] = df2[df2.days_held.notnull()].mean()[['curr_face','initialinvestment', 'days_held']]

        df[df.days_held.notnull()]['days_held'].groupby(pd.Grouper(freq='A')).mean()


def get_rmbs_pos_df(date = None):

    engine = dbengine('dawndb')
    calc_df = pd.DataFrame()
    end_date = pd.datetime.today() - MonthEnd(1)

    if date is not None:
        date = date + MonthEnd(0)
    df = get_portfolio(date)
    df = df.sort_index().loc[:end_date]
    mask = (df.port == 'MORTGAGES') & (df.endbookmv > 0) & (df['invid'].str.len() == 9)
    df = df[mask]
    sql_string = "SELECT distinct timestamp FROM priced"
    timestamps = pd.read_sql_query(sql_string, engine)

    for d, g in df.groupby(pd.Grouper(freq='M')):
        model_date = pd.to_datetime(timestamps[timestamps.timestamp <= d+off.DateOffset(days=1)].max()[0]).date()
        yc = YC(evaluation_date=model_date)
        libor = float(yc.zero_rate(.125))
        if d > pd.datetime(2017, 9, 30):
            model_id_sql_string = "SELECT * FROM latest_sim(%s)"
            model_id = pd.read_sql_query(model_id_sql_string, engine, params=[model_date])
            model_id = model_id.loc[0][0]
            #special case
            if model_date == pd.datetime(2017, 10, 27).date():
                model_id = 4
            sql_string = "SELECT * FROM priced where date(timestamp) = %s and model_id_sub = %s"
            model = pd.read_sql_query(sql_string, engine, params=[model_date, model_id])
        else:
            sql_string = "SELECT * FROM priced where date(timestamp) = %s"
            model = pd.read_sql_query(sql_string, engine, params=[model_date])
        model['timestamp'] = model['timestamp'].dt.date
        model = model[model.normalization == 'current_notional']
        model = model.set_index(['cusip', 'model_version']).unstack(1)
        temp = pd.merge(g.loc[d], model, left_on='identifier', right_index=True)
        temp['curr_ntl'] = temp.endbooknav/temp.endlocalmarketprice *100
        temp['b_yield'] = np.minimum((temp[('pv', 1)]/temp.endlocalmarketprice*100) ** (1/temp[('moddur', 1)]) - 1, 10)
        temp = temp.dropna(subset=['b_yield'])
        temp['b_yield'] = temp.apply(lambda df: df['b_yield'] + float(yc.zero_rate(df[('moddur', 3)])) - libor, axis=1)
        temp = temp[(temp[('pv', 3)] != 0)]
        temp['percent_model'] = temp.apply(lambda df: df.endlocalmarketprice/100/df[('pv', 3)], axis=1)
        calc_df = calc_df.append(temp)

    return calc_df