aboutsummaryrefslogtreecommitdiffstats
path: root/python/graphics.py
blob: cc538aa8ce7c660b79035f0715c2bfe816b668c9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.colors import LinearSegmentedColormap

from scipy.interpolate import griddata
from scipy.stats import norm
from scipy.optimize import curve_fit

def shiftedColorMap(cmap, start=0, midpoint=0.5, stop=1.0, name='shiftedcmap'):
    '''
    Function to offset the "center" of a colormap. Useful for
    data with a negative min and positive max and you want the
    middle of the colormap's dynamic range to be at zero

    Input
    -----
      cmap : The matplotlib colormap to be altered
      start : Offset from lowest point in the colormap's range.
          Defaults to 0.0 (no lower ofset). Should be between
          0.0 and `midpoint`.
      midpoint : The new center of the colormap. Defaults to
          0.5 (no shift). Should be between 0.0 and 1.0. In
          general, this should be  1 - vmax/(vmax + abs(vmin))
          For example if your data range from -15.0 to +5.0 and
          you want the center of the colormap at 0.0, `midpoint`
          should be set to  1 - 5/(5 + 15)) or 0.75
      stop : Offset from highets point in the colormap's range.
          Defaults to 1.0 (no upper ofset). Should be between
          `midpoint` and 1.0.
    '''
    cdict = {
        'red': [],
        'green': [],
        'blue': [],
        'alpha': []
    }

    # regular index to compute the colors
    reg_index = np.linspace(start, stop, 257)

    # shifted index to match the data
    shift_index = np.hstack([
        np.linspace(0.0, midpoint, 128, endpoint=False),
        np.linspace(midpoint, 1.0, 129, endpoint=True)
    ])

    for ri, si in zip(reg_index, shift_index):
        r, g, b, a = cmap(ri)

        cdict['red'].append((si, r, r))
        cdict['green'].append((si, g, g))
        cdict['blue'].append((si, b, b))
        cdict['alpha'].append((si, a, a))

    newcmap = LinearSegmentedColormap(name, cdict)
    plt.register_cmap(cmap=newcmap)

    return newcmap

def plot_time_color_map(df, spread_shock, attr="pnl", path=".", color_map=cm.RdYlGn, index='IG', centered = True):

    val_date = df.index[0].date()
    df = df.reset_index()
    df['days'] = (df['date'] - val_date).dt.days
    ascending = [True,True] if index == 'HY' else [True,False]
    df.sort_values(by=['date','spread'], ascending = ascending, inplace = True)
    date_range = df.days.unique()

    #plt.style.use('seaborn-whitegrid')
    fig, ax = plt.subplots()
    series = df[attr]
    if centered is True:
        midpoint = 1 - series.max() / (series.max() + abs(series.min()))
        shifted_cmap = shiftedColorMap(color_map, midpoint=midpoint, name='shifted')
    else:
        shifted_cmap = color_map

    chart = ax.imshow(series.values.reshape(date_range.size, spread_shock.size).T,
                      extent=(date_range.min(), date_range.max(),
                              spread_shock.min(), spread_shock.max()),
                      aspect='auto', interpolation='bilinear', cmap=shifted_cmap)

    #chart = ax.contour(date_range, spread_shock, series.values.reshape(date_range.size, spread_shock.size).T)

    ax.set_xlabel('Days')
    ax.set_ylabel('Price') if index == 'HY' else ax.set_ylabel('Spread')
    ax.set_title('{} of Trade'.format(attr.title()))

    fig.colorbar(chart, shrink=.8)
    #fig.savefig(os.path.join(path, "spread_time_color_map_"+ attr+ "_{}.png".format(val_date)))

def plot_color_map(df, spread_shock, vol_shock, attr="pnl", path=".", index='IG'):
    # TODO: merge with plot_time_color_map
    val_date = df.index[0].date()
    #rows are spread, columns are volatility surface shift
    fig, ax = plt.subplots()
    #We are plotting an image, so we have to sort from high to low on the Y axis
    ascending = [False,False] if index == 'HY' else [True,False]
    df.sort_values(by=['spread','vol_shock'], ascending=ascending, inplace=True)
    series = df[attr]

    midpoint = 1 - series.max() / (series.max() + abs(series.min()))
    shifted_cmap = shiftedColorMap(cm.RdYlGn, midpoint=midpoint, name='shifted')

    chart = ax.imshow(series.values.reshape(spread_shock.size, vol_shock.size).T,
                      extent=(spread_shock.min(), spread_shock.max(),
                              vol_shock.min(), vol_shock.max()),
                      aspect='auto', interpolation='bilinear', cmap=shifted_cmap)

    ax.set_xlabel('Price') if index == 'HY' else ax.set_xlabel('Spread')
    ax.set_ylabel('Volatility shock')
    ax.set_title('{} of Trade on {}'.format(attr.title(), val_date))

    fig.colorbar(chart, shrink=.8)
    #fig.savefig(os.path.join(path, "vol_spread_color_map"+ attr+ "_{}.png".format(val_date)))

def plot_prob_map(df, attr="pnl", path=".", color_map=cm.RdYlGn, index='IG'):

    val_date = df.index[0].date()
    df = df.reset_index()
    df['days'] = (df['date'] - val_date).dt.days
    series = df[attr]

    days_defined = np.linspace(df.days.min(), df.days.max(), 1000)
    prob_defined = np.linspace(0.001, .999, 1000)

    midpoint = 1 - series.max() / (series.max() + abs(series.min()))
    shifted_cmap = shiftedColorMap(color_map, midpoint=midpoint, name='shifted')

    resampled = griddata((df.days, df.prob), series, (days_defined[None, :],
                                                      prob_defined[:, None]), method='linear')

    #plot
    fig, ax = plt.subplots()
    chart = ax.imshow(resampled.reshape(days_defined.size, prob_defined.size),
                      extent=(df.days.min(), df.days.max(), 0, 1),
                      aspect='auto', interpolation='bilinear', cmap=shifted_cmap)

    ax.set_xlabel('Days')
    ax.set_ylabel('Probability')
    ax.set_title('{} of Trade'.format(attr.title()))

    fig.colorbar(chart, shrink=.8)