aboutsummaryrefslogtreecommitdiffstats
path: root/python/graphics.py
blob: 0f348a046efb365a10bd488a00b85728f46c7eb7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm

def shiftedColorMap(cmap, start=0, midpoint=0.5, stop=1.0, name='shiftedcmap'):
    '''
    Function to offset the "center" of a colormap. Useful for
    data with a negative min and positive max and you want the
    middle of the colormap's dynamic range to be at zero

    Input
    -----
      cmap : The matplotlib colormap to be altered
      start : Offset from lowest point in the colormap's range.
          Defaults to 0.0 (no lower ofset). Should be between
          0.0 and `midpoint`.
      midpoint : The new center of the colormap. Defaults to
          0.5 (no shift). Should be between 0.0 and 1.0. In
          general, this should be  1 - vmax/(vmax + abs(vmin))
          For example if your data range from -15.0 to +5.0 and
          you want the center of the colormap at 0.0, `midpoint`
          should be set to  1 - 5/(5 + 15)) or 0.75
      stop : Offset from highets point in the colormap's range.
          Defaults to 1.0 (no upper ofset). Should be between
          `midpoint` and 1.0.
    '''
    cdict = {
        'red': [],
        'green': [],
        'blue': [],
        'alpha': []
    }

    # regular index to compute the colors
    reg_index = np.linspace(start, stop, 257)

    # shifted index to match the data
    shift_index = np.hstack([
        np.linspace(0.0, midpoint, 128, endpoint=False),
        np.linspace(midpoint, 1.0, 129, endpoint=True)
    ])

    for ri, si in zip(reg_index, shift_index):
        r, g, b, a = cmap(ri)

        cdict['red'].append((si, r, r))
        cdict['green'].append((si, g, g))
        cdict['blue'].append((si, b, b))
        cdict['alpha'].append((si, a, a))

    newcmap = matplotlib.colors.LinearSegmentedColormap(name, cdict)
    plt.register_cmap(cmap=newcmap)

    return newcmap


def plot_time_color_map(df, spread_shock, attr="pnl", path=".", color_map=cm.RdYlGn, index='IG'):

    val_date = df.index[0].date()
    df = df.reset_index()
    df['days'] = (df['date'] - val_date).dt.days
    ascending = [True,True] if index == 'HY' else [True,False]
    df.sort_values(by=['date','spread'], ascending = ascending, inplace = True)
    date_range = df.days.unique()

    #plt.style.use('seaborn-whitegrid')
    fig, ax = plt.subplots()
    series = df[attr]
    midpoint = 1 - series.max() / (series.max() + abs(series.min()))
    shifted_cmap = shiftedColorMap(color_map, midpoint=midpoint, name='shifted')

    chart = ax.imshow(series.values.reshape(date_range.size, spread_shock.size).T,
                      extent=(date_range.min(), date_range.max(),
                              spread_shock.min(), spread_shock.max()),
                      aspect='auto', interpolation='bilinear', cmap=shifted_cmap)

    #chart = ax.contour(date_range, spread_shock, series.values.reshape(date_range.size, spread_shock.size).T)

    ax.set_xlabel('Days')
    ax.set_ylabel('Price') if index == 'HY' else ax.set_ylabel('Spread')
    ax.set_title('{} of Trade'.format(attr.title()))

    fig.colorbar(chart, shrink=.8)
    #fig.savefig(os.path.join(path, "spread_time_color_map_"+ attr+ "_{}.png".format(val_date)))