aboutsummaryrefslogtreecommitdiffstats
path: root/python/index_data.py
blob: f04d7d4a118f10e6312fac100cec508310e5d682 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
from db import dbengine, dbconn
from dates import bond_cal

import datetime
import pandas as pd
_serenitas_engine = dbengine('serenitasdb')

def insert_quotes():
    """
    backpopulate some version i+1 quotes one day before they start trading so that
    we get continuous time series when we compute returns.

    We can also do it in sql as follows:

    INSERT INTO index_quotes(date, index, series, version, tenor, closeprice)
    SELECT date, index, series, version+1, tenor, (factor1*closeprice-100*0.355)/factor2
    FROM index_quotes
    WHERE index='HY' and series=23 and date='2017-02-02'

    """
    dates = pd.DatetimeIndex(['2014-05-21', '2015-02-19', '2015-03-05','2015-06-23'])
    df = pd.read_sql_query("SELECT DISTINCT ON (date) * FROM index_quotes " \
                           "WHERE index='HY' AND tenor='5yr' " \
                           "ORDER BY date, series DESC, version DESC",
                           _serenitas_engine, parse_dates=['date'], index_col=['date'])
    df = df.loc[dates]
    for tup in df.itertuples():
        result = serenitasdb.execute("SELECT indexfactor, cumulativeloss  FROM index_version " \
                                     "WHERE index = 'HY' AND series=%s AND version in (%s, %s)" \
                                     "ORDER BY version",
                                     (tup.series, tup.version, tup.version+1))
        factor1, cumloss1 = result.fetchone()
        factor2, cumloss2 = result.fetchone()
        recovery = 1-(cumloss2-cumloss1)
        version2_price = (factor1 * tup.closeprice - 100*recovery)/factor2
        print(version2_price)
        _serenitas_engine.execute("INSERT INTO index_quotes(date, index, series, version, tenor, closeprice)" \
                                  "VALUES(%s, %s, %s, %s, %s, %s)",
                                  (tup.Index, 'HY', tup.series, tup.version+1, tup.tenor, version2_price))

def get_index_quotes(index=None, series=None, tenor=None, from_date=None, years=3):
    args = locals().copy()
    if args['years'] is not None:
        args['date'] = (pd.Timestamp.now() - pd.DateOffset(years=years)).date()
    del args['years']
    if args['from_date']:
        args['date'] = args['from_date']
        del args['from_date']
    def make_str(key, val):
        if isinstance(val, list):
            op = "IN"
            return "{} IN %({})s".format(key, key)
        elif isinstance(val, datetime.date):
            op = ">="
        else:
            op = "="
        return "{} {} %({})s".format(key, op, key)

    where_clause = " AND ".join(make_str(k, v)
                                for k, v in args.items() if v is not None)
    sql_str = "SELECT * FROM index_quotes"
    if where_clause:
        sql_str = " WHERE ".join([sql_str, where_clause])

    def make_params(args):
        return {k: tuple(v) if isinstance(v, list) else v
                for k, v in args.items() if v is not None}

    df = pd.read_sql_query(sql_str, _serenitas_engine, parse_dates=['date'],
                           index_col=['date', 'index', 'series', 'version'],
                           params = make_params(args))
    df.tenor = df.tenor.astype('category', categories=("3yr", "5yr", "7yr", "10yr"), ordered=True)
    df = df.set_index('tenor', append=True)
    df.sort_index(inplace=True)
    ## get rid of US holidays
    dates = df.index.levels[0]
    if index in ['IG', 'HY']:
        holidays = bond_cal().holidays(start=dates[0], end=dates[-1])
        df = df.loc(axis=0)[dates.difference(holidays),:,:]
    return df

def index_returns(df=None, index=None, series=None, tenor=None, from_date=None, years=3, per=1):
    """computes daily spreads and price returns

    Parameters
    ----------
    df : pandas.DataFrame
    index : str or List[str], optional
        index type, one of 'IG', 'HY', 'EU', 'XO'
    series : int or List[int], optional
    tenor : str or List[str], optional
        tenor in years e.g: '3yr', '5yr'
    date : datetime.date, optional
        starting date
    years : int, optional
        limits many years do we go back starting from today.
    per: int, optional
        calculate returns across different time frames

    """
    if df is None:
        df = get_index_quotes(index, series, tenor, from_date, years)
    df = (df.
          groupby(level=['index', 'series', 'tenor', 'version'])
          [['closespread','closeprice']].
           pct_change(periods=per))
    df.columns = ['spread_return', 'price_return']
    df = df.groupby(level=['date', 'index', 'series', 'tenor']).nth(0)
    coupon_data = pd.read_sql_query("SELECT index, series, tenor, coupon FROM " \
                                    "index_maturity WHERE coupon is NOT NULL", _serenitas_engine,
                                    index_col=['index', 'series', 'tenor'])
    def add_accrued(df):
        coupon = coupon_data.loc[df.index[0][1:],'coupon'] * 1e-4
        accrued = (df.index.levels[0].to_series().diff(periods=per).
                   astype('timedelta64[D]')/360 * coupon)
        return df + accrued

    df['price_return'] = (df.
                          groupby(level=['index', 'series', 'tenor'])['price_return'].
                          transform(add_accrued))
    return df