1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
|
import argparse
import datetime
import logging
import pandas as pd
from serenitas.utils.env import DAILY_DIR
from serenitas.analytics.dates import prev_business_day
from serenitas.utils.db import dawn_engine
from serenitas.utils.db import dbconn
from collateral.baml_isda import load_excel
from report_ops.enums import FundEnum
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
FX_REPORT_COLUMNS = [
"cpty_id",
"trade_date",
"settle_date",
"buy_currency",
"buy_amount",
"sell_currency",
"sell_amount",
]
def get_tag(fund):
if fund == "Serenitas":
return "TSLP"
elif fund == "BowdSt":
return "TLLC"
elif fund == "Selene":
return "INC"
else:
return ""
def read_BAMSNY(fund, workdate):
REPORTS_DIR = DAILY_DIR / fund / "BoA_reports"
fname = next(
REPORTS_DIR.glob(f"301__LMCG_INVESTMEN{get_tag(fund)}_CSA_{workdate:%m%d%Y}_*")
)
df = load_excel(fname)
df = df[df["ProductID"] == "FX_Fwd"]
df = df[
[
"Back Office Number",
"Trade Date",
"Maturity Date",
"Ccy1",
"Notional 1",
"Ccy2",
"Notional 2",
]
]
df.columns = FX_REPORT_COLUMNS
for date_column in (
"trade_date",
"settle_date",
):
df[date_column] = pd.to_datetime(df[date_column], infer_datetime_format=True)
df[["buy_amount", "sell_amount"]] = df[["buy_amount", "sell_amount"]].apply(
pd.to_numeric, errors="coerce"
)
yield from df.itertuples()
def read_MSCSNY(fund, workdate):
df = pd.read_excel(
DAILY_DIR
/ fund
/ "MS_reports"
/ f"Trade_Detail_FX_{prev_business_day(workdate):%Y%m%d}.xls"
)
df = df[
[
"trade_id",
"trade_date",
"settlement_date",
"buy_ccy",
"amt_buy_ccy",
"sell_ccy",
"amt_sell_ccy",
]
]
df.columns = FX_REPORT_COLUMNS
for date_column in (
"trade_date",
"settle_date",
):
df[date_column] = pd.to_datetime(
df[date_column], infer_datetime_format=True
).dt.date
df[["buy_amount", "sell_amount"]] = df[["buy_amount", "sell_amount"]].apply(
pd.to_numeric, errors="coerce"
)
yield from df.itertuples()
def get_forwards(cob):
df = pd.read_sql_query("SELECT * FROM forward_trades", con=dawn_engine)
df[["buy_amount", "sell_amount"]] = df[["buy_amount", "sell_amount"]].apply(
pd.to_numeric, errors="coerce"
)
return df
def main(workdate):
conn = dbconn("dawndb")
dawn_trades = get_forwards(workdate)
for fund in FundEnum:
for counterparty in ("MSCSNY", "BAMSNY"):
read_fun = globals()[f"read_{counterparty}"]
for row in read_fun(fund.name, workdate):
if row.cpty_id not in dawn_trades.cpty_id.values:
matching_candidates = dawn_trades.loc[
(dawn_trades["cp_code"] == counterparty)
& (dawn_trades["fund"] == fund.value)
]
filters = {
"trade_date": row.trade_date,
"settle_date": row.settle_date,
"buy_currency": row.buy_currency,
"sell_currency": row.sell_currency,
"buy_amount": row.buy_amount,
"sell_amount": row.sell_amount,
}
matching_candidates = matching_candidates.loc[
(
matching_candidates[list(filters.keys())]
== pd.Series(filters)
).all(axis=1)
]
if not matching_candidates.empty:
matched_candidate = matching_candidates.iloc[0, :]
with conn.cursor() as c:
if matched_candidate.fx_type == "SPOT":
table = "spots"
column = "cpty_id"
elif matched_candidate.fx_type in (
"NEAR",
"FAR",
):
table = "fx_swaps"
column = f"{matched_candidate.fx_type.lower()}_cpty_id"
c.execute(
f"UPDATE {table} SET {column}=%s WHERE id=%s",
(
row.cpty_id,
matched_candidate.id,
),
)
logger.info("UPDATED %", matched_candidate.id)
conn.commit()
else:
raise ValueError(
f"This is an unknown trade from us. {row.cpty_id}"
)
else:
pass # Will later start verifying that our trades are matched right
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"workdate",
type=datetime.date,
nargs="?",
default=datetime.date.today(),
help="Date to process (YYYY-MM-DD)",
)
args = parser.parse_args()
main(args.workdate)
|