aboutsummaryrefslogtreecommitdiffstats
path: root/python/interest_statement.py
blob: f01a3c3d74367f73a6eebeecbc7e0380d46b7fe9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import pandas as pd
from pandas.tseries.offsets import BDay

from serenitas.utils.db import dbconn, serenitas_engine

dawndb = dbconn("dawndb")
df_balances = pd.read_sql_query(
    "SELECT * FROM strategy_im WHERE fund='SERCGMAST'",
    dawndb,
    parse_dates=["date"],
    index_col=["date"],
).sort_index()
df_balances[["broker", "strategy"]] = df_balances[["broker", "strategy"]].astype(
    "category"
)


def get_rates(broker):
    rate_index = "SOFRRATE" if broker == "BARCLAYS" else "FED_FUND"

    return pd.read_sql_query(
        "SELECT date, rate FROM rates where name=%s",
        serenitas_engine,
        params=(rate_index,),
        parse_dates=["date"],
        index_col=["date"],
    ).sort_index()


def f(broker, start_date, end_date):
    df_rates = get_rates(broker)
    df = (
        df_balances[df_balances.broker == broker]
        .set_index("strategy", append=True)["amount"]
        .unstack("strategy")
    )
    df[df.isnull()] = 0.0
    drange = pd.date_range(pd.Timestamp(start_date) - BDay(), end_date)
    rates = df_rates.reindex(drange, method="ffill") / 100 / 360
    df = df.reindex(drange, method="ffill")
    if broker in ["BAML_ISDA", "CITI"]:
        d = {}
        for strat in df:
            s = df.loc[start_date:, strat]
            ir_bal = 0.0
            for bal, r in zip(s.values, rates.loc[start_date:, "rate"].values):
                bal += ir_bal
                ir_bal += bal * r
            d[strat] = ir_bal
        return pd.Series(d, name="amount").to_frame()
    else:
        return (
            (df.loc[start_date:] * rates.loc[start_date:].values)
            .sum()
            .to_frame(name="amount")
        )


def export_data(start, end):
    dfs = {}
    for cp in ("GS", "MS", "BAML_ISDA", "CITI", "CS", "BNP", "JPM", "BARCLAYS"):
        dfs[cp] = f(cp, start, end)
    df = pd.concat(dfs, names=["broker", "folder"])
    df = df[df.amount != 0.0]
    df.amount *= -1.0
    return df


if __name__ == "__main__":
    import argparse

    parser = argparse.ArgumentParser()
    parser.add_argument("start_date")
    parser.add_argument("end_date")
    args = parser.parse_args()
    df = export_data(args.start_date, args.end_date)