aboutsummaryrefslogtreecommitdiffstats
path: root/python/load_globeop_report.py
blob: 5c0ccffc8310d59683f302c2572deb21a1fa9e0a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
from glob import iglob
import os
import pandas as pd
from itertools import chain
from dates import bus_day
from db import dbengine
import datetime

def get_globs(fname, years=['2013', '2014', '2015', '2016', '2017']):
    basedir = '/home/serenitas/Daily'
    globs = [iglob(os.path.join(basedir,
                                year,
                                "{0}_*/{0}*/Reports/{1}.csv".format(year, fname)))
             for year in years]
    for year in years[-2:]:
        globs.append(iglob(os.path.join(basedir,
                                        '{0}-*/Reports/{1}.csv'.format(year,
                                                                       fname))))
    return globs

def read_valuation_report(f):
    date = pd.Timestamp(f.parts[4])
    if date >= pd.Timestamp('2013-02-06'):
        df = pd.read_csv(f, parse_dates=['KnowledgeDate', 'PeriodEndDate'])
    else:
        df = pd.read_csv(f)
        df['KnowledgeDate'] = date
        df['PeriodEndDate'] = date - bus_day
    df['row'] = df.index
    if 'AccountingPeriod' in df:
        del df['AccountingPeriod']
    if 'CounterParty' in df:
        del df['CounterParty']
    df = df.rename(columns={'CounterPartyCode': 'counterparty'})
    if "Strat" in df:
        df.Strat = df.Strat.str.replace("^(SERCGMAST__){1,2}(M_|SER_)?", "", 1)
    if "Port" in df:
        df.Port = df.Port.str.replace("^(SERCGMAST__){1,2}(SERG__|SERG_)?", "", 1)
    df.columns = df.columns.str.lower()
    return df

def valuation_reports():
    df = pd.concat(read_valuation_report(f) for f in
                   chain.from_iterable(get_globs('Valuation_Report')))
    # There can be duplicates in case of holidays
    df = df.sort_values(['periodenddate', 'row', 'knowledgedate'])
    df = df.drop_duplicates(['periodenddate', 'row'], 'last')
    df.to_sql('valuation_reports', dbengine('dawndb'), if_exists='append', index=False)

def read_pnl_report(f):
    df = pd.read_csv(f)
    df.Strat = df.Strat.str.replace("^(SERCGMAST__){1,2}(M_|SER_)?", "", 1)
    df.Port = df.Port.str.replace("^(SERCGMAST__){1,2}(SERG__|SERG_)?", "", 1)
    df['LongShortIndicator'] = df['LongShortIndicator'].str.strip()
    df.columns = df.columns.str.lower().str.replace(" ", "")
    return df

def pnl_reports():
    df = {}
    for f in chain.from_iterable(get_globs('Pnl*')):
        if not (f.endswith("Pnl.csv") and f.endswith("Pnl_Report.csv")):
            continue
        date = pd.Timestamp(f.rsplit('/', 3)[1])
        date = date - bus_day
        df[date] = read_pnl_report(f)
    df = pd.concat(df, names=['date', 'row']).reset_index()
    df.to_sql('pnl_reports', dbengine('dawndb'), if_exists='append', index=False)

def read_cds_report(f):
    df = pd.read_csv(f)
    df2 = pd.read_csv(f.parent / "All_Report.csv")
    def drop_zero_count(df):
        for col in df:
            vc = len(df[col].value_counts())
            if vc == 0:
                del df[col]
                continue
    drop_zero_count(df)
    drop_zero_count(df2)
    contract = df['Contractual Definition']
    contract = contract.where(contract.isin(['ISDA2014', 'ISDA2003Cred']), 'ISDA2014')
    df['Contractual Definition'] = contract
    to_drop = ['Bloomberg Yellow key', 'Created User', 'Last Modified User',
               'Last Modified Date', 'Fund Long Name', 'Instrument Sub Type',
               'Netting Id', 'Client', 'Trade Status', 'Position Status',
               'Clearing Broker', 'Settle Mode', 'Off Price', 'On Price',
               'Price Ccy', 'VAT', 'SEC Fee', 'Clearing Fee',
               'Trading Notional', 'BBGID']
    df = df.drop(to_drop,
                 axis=1, errors='ignore')
    df2 = df2.drop(to_drop,
                   axis=1, errors='ignore')
    df.columns = df.columns.str.lower().str.replace(" ", "_")
    df2.columns = df2.columns.str.lower().str.replace(" ", "_")
    df.calendar = df.calendar.str.replace(" ", "")
    df = df.rename(columns={'direction': 'buy/sell'})
    df.roll_convention = df.roll_convention.str.title()
    df = df[df.strategy != 'SER_TEST']
    df.loc[df.strategy == 'SERCGMAST__MBSCDS', 'strategy'] = 'MBSCDS'
    df.strategy = df.strategy.str.replace("SER_", "")
    df['buy/sell'] = df['buy/sell'].astype('category')
    df['buy/sell'].cat.categories = ['Buyer', 'Seller']
    del df['independent_%']
    df2 = df2.rename(columns={'independent_%': 'independent_perc'})
    df.prime_broker = df.prime_broker.where(df.prime_broker != 'NONE')
    return df.set_index('gtid').join(df2.set_index('gtid')[
        df2.columns.difference(df.columns)]).reset_index()

def cds_reports():
    df = {}
    for f in chain.from_iterable(get_globs('CDS_Report')):
        date = pd.Timestamp(f.rsplit('/', 3)[1])
        old_report = date <= pd.Timestamp('2017-02-28') or date == pd.Timestamp('2017-03-02')
        date = date - bus_day
        df[date] = read_cds_report(f, old_report)
    df = pd.concat(df, names=['date', 'row']).reset_index()
    return df

def monthly_pnl_bycusip(df, strats):
    df = df[(df.strat.isin(strats)) & (df.custacctname=='V0NSCLMAMB')]
    pnl_cols = ['bookunrealmtm', 'bookrealmtm', 'bookrealincome', 'bookunrealincome', 'totalbookpl']
    return df.groupby('invid').resample('M').last()[['mtd'+col for col in pnl_cols]]

if __name__=='__main__':
    valuation_reports()
    pnl_reports()
    df_val = pd.read_hdf('globeop.hdf', 'valuation_report')
    df_pnl = pd.read_hdf('globeop.hdf', 'pnl')
    nav = df_val[df_val.Fund == 'SERCGMAST'].groupby('PeriodEndDate')['EndBookNAV'].sum()
    subprime_strats = ['MTG_GOOD', 'MTG_RW', 'MTG_IO','MTG_THRU', 'MTG_B4PR']
    clo_strats = ['CLO_BBB', 'CLO_AAA', 'CLO_BB20']

    ## daily pnl by cusip
    #subprime_daily_pnl = daily_pnl_bycusip(df_pnl, subprime_strats)

    df_monthly = monthly_pnl_bycusip(df_pnl, subprime_strats)
    #df_monthly.loc[idx[ts('2015-01-01'):ts('2015-01-31'),:],:]

    # clo = df_pnl[df_pnl.Strat.isin(clo_strats)]
    # clo_monthly_pnl = clo.groupby(level=0).sum()['MTD TotalBookPL'].resample('M').last()

    # clo.groupby(level=0).sum()['2015-12-01':'2015-12-31']
    df_val.set_index(['custacctname', 'periodenddate', 'invid', 'strat'])