aboutsummaryrefslogtreecommitdiffstats
path: root/python/load_globeop_report.py
blob: 6b926ba71849c4dc9d179306fb4119c310f97a17 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
from glob import iglob
import os
import pandas as pd
from itertools import chain
from dates import bus_day
import pdb

def get_globs(fname, years=['2013', '2014', '2015', '2016']):
    basedir = '/home/share/Daily'
    globs = [iglob(os.path.join(basedir,
                                year,
                                "{0}_*/{0}*/Reports/{1}.csv".format(year, fname)))
             for year in years]
    for year in years[-2:]:
        globs.append(iglob(os.path.join(basedir,
                                    '{0}-*/Reports/{1}.csv'.format(year,
                                                                   fname))))
    return globs

def valuation_reports():
    df = pd.DataFrame()
    for f in chain.from_iterable(get_globs('Valuation_Report')):
        try:
            date = pd.Timestamp(f.split('/')[6])
        except ValueError:
            date = pd.Timestamp(f.split('/')[4])

        if date>=pd.Timestamp('2013-02-06'):
            newdf = pd.read_csv(f, parse_dates=['KnowledgeDate','PeriodEndDate'])
        else:
            newdf = pd.read_csv(f)
            newdf['KnowledgeDate'] = date
            newdf['PeriodEndDate'] = date - bus_day
        if newdf.empty or ('PeriodEndDate' in df and \
           not df[df.PeriodEndDate == newdf.PeriodEndDate.iat[0]].empty):
            continue
        df = df.append(newdf)
    del df['AccountingPeriod']
    for col in ['Strat','InvCcy','Fund','Port']:
        df[col] = df[col].astype('category')
    df.to_hdf('globeop.hdf', 'valuation_report', format='table', complib='blosc')

def pnl_reports():
    df = {}
    for f in chain.from_iterable(get_globs('Pnl')):
        try:
            date = pd.Timestamp(f.split('/')[6])
        except ValueError:
            date = pd.Timestamp(f.split('/')[4])
        date = date - bus_day
        if date in df:
            print(date)
        df[date] = pd.read_csv(f)
    df = pd.concat(df)
    for col in ['Fund', 'Strat', 'Port', 'LongShortIndicator', 'InvCcy']:
        df[col] = df[col].astype('category')
    df.to_hdf('globeop.hdf', 'pnl', format='table', complib='blosc')


if __name__=='__main__':
    valuation_reports()
    pnl_reports()
    df_val = pd.read_hdf('globeop.hdf', 'valuation_report')
    df_pnl = pd.read_hdf('globeop.hdf', 'pnl')
    nav = df_val[df_val.Fund=='SERCGMAST'].groupby('PeriodEndDate')['EndBookNAV'].sum()
    subprime_strats = ['SERCGMAST__M_MTG_GOOD', 'SERCGMAST__M_MTG_RW',
                       'SERCGMAST__M_MTG_IO','SERCGMAST__M_MTG_THRU',
                       'SERCGMAST__M_MTG_B4PR']
    clo_strats = ['SERCGMAST__M_CLO_BBB', 'SERCGMAST__M_CLO_AAA', 'SERCGMAST__M_CLO_BB20']
    subprime = df_pnl[df_pnl.Strat.isin(subprime_strats)]
    subprime_monthly_pnl = subprime.groupby(level=0).sum()['MTD TotalBookPL'].resample('M', how='last')
    clo = df_pnl[df_pnl.Strat.isin(clo_strats)]
    clo_monthly_pnl = clo.groupby(level=0).sum()['MTD TotalBookPL'].resample('M', how='last')

    clo.groupby(level=0).sum()['2015-12-01':'2015-12-31']