aboutsummaryrefslogtreecommitdiffstats
path: root/python/markit/import_quotes.py
blob: 22339bfe6c858a1a1d1e6800d3f38875c09e18d2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import csv
import datetime
import logging
import numpy as np
import pandas as pd
import os

from collections import defaultdict
from itertools import chain
from pandas.tseries.offsets import BDay

logger = logging.getLogger(__name__)


def convert(x):
    try:
        return float(x[:-1])
    except ValueError:
        return None


def get_index_list(database, workdate):
    with database.cursor() as c:
        c.execute(
            "SELECT distinct index, series FROM index_maturity "
            "WHERE issue_date IS NOT NULL and issue_date <= %s + 10 "
            "AND maturity >= %s",
            (workdate, workdate),
        )
        for index, series in c:
            yield index + str(series)
    database.commit()


DOC_CLAUSE_MAPPING14 = {
    "Full Restructuring": "MM14",
    "No Restructuring": "XR14",
    "Modified Modified Restructurin": "MM14",
}

DOC_CLAUSE_MAPPING = {
    "Full Restructuring": "MM",
    "No Restructuring": "XR",
    "Modified Modified Restructurin": "MM",
}


def get_markit_bbg_mapping(database, basketid_list, workdate):
    markit_bbg_mapping = defaultdict(set)
    all_tickers = set([])
    with database.cursor() as c:
        c.execute(
            "SELECT markit_ticker, markit_tier, spread, currency, cds_curve, "
            " short_code FROM historical_cds_issuers(%s) "
            "JOIN basket_constituents USING (company_id, seniority) "
            "WHERE basketid=ANY(%s)",
            (workdate, list(basketid_list)),
        )
        for line in c:
            all_tickers.add((line.markit_ticker, line.markit_tier))
            key = (
                line.markit_ticker,
                line.markit_tier,
                line.currency,
                line.short_code,
                float(line.spread) / 10000,
            )
            ## each markit ticker can be mapped to multiple bbg tickers
            ## these bbg tickers can have different curves (ok)
            ## or same curves (not ok since date, curve_ticker needs to be unique)
            ## therefore we keep them in a set structure
            markit_bbg_mapping[key].add(tuple(line.cds_curve))
    database.commit()
    return (all_tickers, markit_bbg_mapping)


def get_bbg_tickers(database, basketid_list, workdate):
    with database.cursor() as c:
        c.execute(
            "SELECT distinct cds_curve FROM historical_cds_issuers(%s) "
            "JOIN basket_constituents USING(company_id, seniority) "
            "WHERE basketid=ANY(%s)",
            (workdate, list(basketid_list)),
        )
        yield from chain.from_iterable(e[0] for e in c)
    database.commit()


def get_basketids(database, index_list, workdate):
    with database.cursor() as c:
        for index in index_list:
            c.execute("SELECT * FROM nameToBasketID(%s, %s)", (index, workdate))
            yield c.fetchone()[0]
    database.commit()


def get_current_tickers(database, workdate):
    index_list = get_index_list(database, workdate)
    basketid_list = get_basketids(database, index_list, workdate)
    return get_markit_bbg_mapping(database, basketid_list, workdate)


def insert_cds(database, workdate):
    """insert Markit index quotes into the database

    :param database: psycopg2 connection to the database.
    :param workdate:
    """

    all_tickers, markit_bbg_mapping = get_current_tickers(database, workdate)
    filename = "cds eod {0:%Y%m%d}.csv".format(workdate)
    colnames = [
        "Upfront" + tenor for tenor in ["6m", "1y", "2y", "3y", "4y", "5y", "7y", "10y"]
    ]
    sqlstr = (
        "INSERT INTO cds_quotes(date, curve_ticker, upfrontbid, upfrontask,"
        "runningbid, runningask, source, recovery) VALUES(%s, %s, %s, %s, %s, %s, %s, %s) "
        "ON CONFLICT DO NOTHING"
    )

    tickers_found = set()
    with open(
        os.path.join(os.environ["BASE_DIR"], "Tranche_data", "CDS", filename)
    ) as fh:
        csvreader = csv.DictReader(fh)
        with database.cursor() as c:
            for line in csvreader:
                spread = float(line["RunningCoupon"])
                k = (
                    line["Ticker"],
                    line["Tier"],
                    line["Ccy"],
                    line["DocClause"],
                    spread,
                )
                if k in markit_bbg_mapping:
                    for curves in markit_bbg_mapping[k]:
                        c.executemany(
                            sqlstr,
                            [
                                (
                                    workdate,
                                    t,
                                    convert(line[col]),
                                    convert(line[col]),
                                    spread * 10000,
                                    spread * 10000,
                                    "MKIT",
                                    convert(line["RealRecovery"]) / 100,
                                )
                                for col, t in zip(colnames, curves)
                            ],
                        )
                    tickers_found.add((line["Ticker"], line["Tier"]))
        database.commit()
    logger.warning("missing_quotes for {0}".format(all_tickers - tickers_found))


def get_date(f):
    with open(f) as fh:
        next(fh)
        next(fh)
        next(fh)
        date = next(fh).split(",", 1)[0][1:-1]
    return datetime.datetime.strptime(date, "%d-%b-%y").date()


def insert_index(engine, workdate=None):
    """insert Markit index quotes into the database

    :param engine: sqlalchemy engine to the database
    :param workdate: date. If None, we will try to reinsert all files
    """

    basedir = os.path.join(os.environ["BASE_DIR"], "Tranche_data", "Composite_reports")
    filenames = [
        os.path.join(basedir, f) for f in os.listdir(basedir) if "Indices" in f
    ]

    name_mapping = {
        "CDXNAHY": "HY",
        "CDXNAIG": "IG",
        "iTraxx Eur": "EU",
        "iTraxx Eur Xover": "XO",
    }
    cols = ["close_price", "close_spread", "model_price", "model_spread"]
    colmapping = {
        "Date": "date",
        "Name": "index",
        "Series": "series",
        "Version": "version",
        "Term": "tenor",
        "Composite Price": "close_price",
        "Composite Spread": "close_spread",
        "Model Price": "model_price",
        "Model Spread": "model_spread",
    }
    ext_cols = ["date", "index", "series", "version", "tenor"] + cols + ["source"]

    dates_to_files = {}
    for f in filenames:
        d = get_date(f)
        if d in dates_to_files:
            dates_to_files[d].append(f)
        else:
            dates_to_files[d] = [f]

    if workdate is None:
        filenames = dates_to_files[max(dates_to_files.keys())]
    else:
        filenames = dates_to_files[workdate]

    for f in filenames:
        data = pd.read_csv(f, skiprows=2, parse_dates=[0, 7], engine="python")
        data = data.rename(columns=colmapping)
        data.dropna(subset=["close_price"], inplace=True)
        for col in cols:
            data[col] = data[col].str.replace("%", "").astype("float")
        data["tenor"] = data["tenor"].apply(lambda x: x.lower() + "r")
        data["index"] = data["index"].apply(
            lambda x: name_mapping[x] if x in name_mapping else np.NaN
        )
        data = data.dropna(subset=["index"])
        data["close_spread"] *= 100
        data["model_spread"] *= 100
        ## we renumbered the version for HY9, 10 and 11
        data.loc[data.series.isin([9, 10, 11]) & (data.index == "HY"), "version"] -= 3
        # data = data.groupby(['index', 'series', 'tenor', 'date'], as_index=False).last()
        data["source"] = "MKIT"
        data[ext_cols].to_sql(
            "index_quotes_pre", engine, if_exists="append", index=False
        )


def insert_tranche(engine, workdate=None):
    """insert Markit index quotes into the database

    :param engine: sqlalchemy engine to the database
    :param workdate: If None, we will try to reinsert all files
    :type workdate: pd.Timestamp
    """

    basedir = os.path.join(os.environ["BASE_DIR"], "Tranche_data", "Composite_reports")
    filenames = [
        os.path.join(basedir, f)
        for f in os.listdir(basedir)
        if f.startswith("Tranche Composites")
    ]
    index_version = pd.read_sql_table("index_version", engine, index_col="redindexcode")
    for f in filenames:
        if (
            workdate is None
            or datetime.datetime.fromtimestamp(os.path.getmtime(f)).date()
            == (workdate + BDay(1)).date()
        ):
            df = pd.read_csv(f, skiprows=2, parse_dates=["Date"])
            df.rename(
                columns={
                    "Date": "quotedate",
                    "Index Term": "tenor",
                    "Attachment": "attach",
                    "Detachment": "detach",
                    "Tranche Upfront Bid": "upfront_bid",
                    "Tranche Upfront Mid": "upfront_mid",
                    "Tranche Upfront Ask": "upfront_ask",
                    "Index Price Mid": "index_price",
                    "Tranche Spread Mid": "tranche_spread",
                    "Red Code": "redindexcode",
                },
                inplace=True,
            )
            df.attach = df.attach * 100
            df.detach = df.detach * 100
            df.tranche_spread = df.tranche_spread * 10000
            df.tenor = df.tenor.str.lower() + "r"
            df.set_index("redindexcode", inplace=True)
            df = df.join(index_version)
            df = df.filter(
                [
                    "basketid",
                    "quotedate",
                    "tenor",
                    "attach",
                    "detach",
                    "upfront_bid",
                    "upfront_ask",
                    "upfront_mid",
                    "tranche_spread",
                    "index_price",
                ]
            )
            df.to_sql("markit_tranche_quotes", engine, if_exists="append", index=False)