1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
|
import csv
import datetime
import io
import logging
import requests
from serenitas.utils.db2 import dbconn
from functools import partial, lru_cache
from itertools import chain
from quote_parsing.parse_emails import get_current_version
params = {
"username": "serenitasreports",
"password": "_m@rk1t_",
"reportUri": "/MarkitQuotes/CLIENTS/AllTrancheQuotes",
"exportType": "csv",
"START_TIME": "11/13/2017",
}
r = requests.post("https://quotes.markit.com/reports/runReport", params=params)
f = io.StringIO(r.text)
index_mapping = {
"ITRAXX-Europe": "EU",
"ITRAXX-Xover": "XO",
"CDX-NAIG": "IG",
"CDX-NAHY": "HY",
}
def convert_float(s):
return float(s) if s else None
serenitasdb = dbconn("serenitasdb")
get_version = lru_cache()(partial(get_current_version, conn=serenitasdb))
runningdict1 = {0: 500, 3: 100, 7: 100, 15: 25}
runningdict2 = {0: 500, 3: 500, 7: 500, 10: 100, 15: 100, 30: 100}
headers = [h.lower() for h in next(f).strip().split(",")]
count = 0
to_insert = {}
tranche_ref = []
for d in csv.DictReader(f, fieldnames=headers):
d["quotedate"] = datetime.datetime.strptime(d["time"], "%m/%d/%Y %H:%M:%S")
d["quotedate"] = d["quotedate"].replace(tzinfo=datetime.timezone.utc)
d["index"] = index_mapping[d["ticker"]]
if d["tenor"] == "20":
continue
d["tenor"] = d["tenor"] + "yr"
for k1 in ["upfront", "spread", "price"]:
for k2 in ["_bid", "_ask"]:
d[k1 + k2] = convert_float(d[k1 + k2])
for k in ["upfront", "spread", "price"]:
d[k + "_mid"] = (
0.5 * (d[k + "_bid"] + d[k + "_ask"])
if d[k + "_bid"] is not None and d[k + "_ask"] is not None
else None
)
d["series"] = int(d["series"])
d["attachment"], d["detachment"] = int(d["attachment"]), int(d["detachment"])
if d["version"] == "":
d["version"] = get_version(d["index"], d["series"], d["quotedate"].date())
else:
d["version"] = int(d["version"])
ref = convert_float(d["reference"])
if d["ticker"] == "CDX-NAHY":
if d["contributor"] == "MS" and ref > 115.0:
d["deleted"] = True
d["indexrefspread"] = ref
for k in ["_bid", "_mid", "_ask"]:
d["upfront" + k] = 0.0
else:
d["indexrefprice"] = ref
for k in ["_bid", "_mid", "_ask"]:
if d["price" + k]:
d["upfront" + k] = d["price" + k]
elif d["spread" + k]:
d["upfront" + k] = d["spread" + k]
d["spread" + k] = (
0 if d["series"] in [9, 10] and d["attachment"] == 10 else 500
)
else:
d["indexrefspread"] = ref
if d["ticker"] == "ITRAXX-Xover":
if int(d["attachment"]) < 35:
for k in ["_bid", "_mid", "_ask"]:
##d[f'upfront{k}'] = d[f'spread{k}']
d["spread" + k] = 500
if d["ticker"] == "ITRAXX-Europe":
if d["attachment"] <= 3:
for k in ["_bid", "_mid", "_ask"]:
# d[f'upfront{k}'] = d[f'spread{k}']
d["spread" + k] = 500 if d["series"] == 19 else 100
if d["ticker"] == "CDX-NAIG":
for k in ["Bid", "Mid", "Ask"]:
# d[f'upfront{k}'] = d[f'spread{k}']
if d["series"] < 19:
try:
running = runningdict2[d["attachment"]]
except KeyError:
continue
elif d["series"] < 25:
running = runningdict1[d["attachment"]]
else:
running = 100
for k in ["_bid", "_mid", "_ask"]:
d["spread" + k] = running
d["delta"] = convert_float(d["delta"])
if d["delta"] is not None and d["delta"] >= 100:
logging.error(d)
d["delta"] = None
if d["version"] == "" and d["index"] == "HY" and d["series"] in (29, 31):
d["version"] = 5
if d["version"] == "" and d["index"] == "HY" and d["series"] == 27:
d["version"] = 7
if d["version"] == "":
if d["index"] == "IG":
d["version"] = 1
elif d["index"] == "EU":
if d["series"] == 32:
d["version"] = 1
elif d["series"] in (28, 30):
d["version"] = 2
key_ref = (
d["quotedate"],
d["index"],
d["series"],
d["version"],
d["tenor"],
d["contributor"][:4],
)
val = (
d["attachment"],
d["detachment"],
d["upfront_bid"],
d["upfront_mid"],
d["upfront_ask"],
d["spread_bid"],
d["spread_mid"],
d["spread_ask"],
d["delta"],
d["quote_id"],
d.get("deleted", False),
)
if key_ref not in to_insert:
tranche_ref.append(
(
*key_ref[:-1],
d.get("indexrefprice"),
d.get("indexrefspread"),
key_ref[-1],
)
)
to_insert[key_ref] = [val]
else:
to_insert[key_ref].append(val)
quoteset_mapping = []
serenitasdb.execute("SET time zone 'UTC'")
with serenitasdb.pipeline():
with serenitasdb.cursor() as c:
for tr in tranche_ref:
c.execute(
"INSERT INTO tranche_quotes_ref(quotedate, index, series, version, tenor, ref_price, ref_spread, quotesource) "
"VALUES (%s, %s, %s, %s, %s, %s, %s, %s) "
"ON CONFLICT (quotedate, index, series, version, tenor, quotesource) DO NOTHING "
"RETURNING quoteset, quotedate, index, series, version, tenor, quotesource",
tr,
)
while True:
try:
quoteset, *key = c.fetchone()
quoteset_mapping.append((quoteset, tuple(key)))
if not c.nextset():
break
except TypeError:
break
c.executemany(
"INSERT INTO tranche_quotes_tranches("
"quoteset, attach, detach, upfront_bid, upfront_mid, upfront_ask, "
"running_bid, running_mid, running_ask, delta, markit_id, deleted)"
"VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)",
chain.from_iterable(
[[(q, *v) for v in to_insert[key]] for q, key in quoteset_mapping]
),
)
serenitasdb.commit()
print(f"loaded {len(quoteset_mapping)} new quotes")
|