aboutsummaryrefslogtreecommitdiffstats
path: root/python/monthly_interest.py
blob: 93844d146f45410a6b7cba7474b479a91fbf3e11 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
from serenitas.utils.env import DAILY_DIR
from serenitas.utils.exchange import ExchangeMessage
import datetime
from collateral.baml_isda import download_from_secure_id
from bs4 import BeautifulSoup
from urllib.parse import urlsplit, parse_qs, urlunsplit
import logging
import argparse

from collateral.common import load_pdf
from pathlib import Path
import pandas as pd
from collections import defaultdict
import shutil

from interest_statement import export_data
from dateutil.relativedelta import relativedelta

logger = logging.getLogger(__name__)


def download_messages(em, counterparty, start, end, recon=False):
    for msg in em.get_msgs(
        20,
        path=["Interest", counterparty],
    ):
        if recon:
            base_dir = (
                DAILY_DIR / "Serenitas" / "MonthlyInterest" / f"{counterparty}_reports"
            )
        else:
            if counterparty == "CITI":
                base_dir = DAILY_DIR / f"{counterparty}_reports" / "Interest Statements"
            elif counterparty == "BAML":
                base_dir = (
                    DAILY_DIR / "Serenitas" / f"BoA_reports" / "Interest Statements"
                )
            else:
                base_dir = (
                    DAILY_DIR
                    / "Serenitas"
                    / f"{counterparty}_reports"
                    / "Interest Statements"
                )
        if (msg.datetime_sent.date() >= datetime.date.fromisoformat(start)) and (
            msg.datetime_sent.date() <= datetime.date.fromisoformat(end)
        ):
            if counterparty == "BAML":
                soup = BeautifulSoup(msg.body, features="lxml")
                a = soup.find("a")
                url = urlsplit(a["href"])
                query = parse_qs(url.query)
                base_url = urlunsplit(url[:2] + ("",) * 3)
                try:
                    download_from_secure_id(
                        query["id"][0], query["brand"][0], base_dir, base_url
                    )
                except ValueError as e:
                    logging.error(e)
                    continue
                continue
            for attach in msg.attachments:
                fname = attach.name
                if (counterparty == "CS") and not ("Interest" in fname):
                    continue
                p = base_dir / fname
                if not p.parent.exists():
                    p.parent.mkdir(parents=True)
                if not p.exists():
                    p.write_bytes(attach.content)


def get_CS(g):
    for e in g:
        if "This interest, margin" in e.text:
            return float(value)
        value = e.text


def get_BNP(g):
    for e in g:
        if "Due to" in e.text:
            value = next(g).text.replace(",", "")
            return -float(value)


def get_CITI(path):
    df = pd.read_excel(path)
    for row in df.itertuples():
        if "Net Interest Due To CP" in row:
            return -row._6


def get_GS(g):
    for e in g:
        if "due to" in e.text:
            return float(next(g).text.replace("USD", "").replace(",", ""))


def get_MS(path):
    df = pd.read_excel(path)
    return -round(df["LOCAL_ACCRUAL"].sum(), 2)


def get_BAML(g):
    for e in g:
        if "Net interest Amount" in e.text:
            return -float(next(g).text.replace("(", "-").replace(")", ""))


def get_JPM(g):
    for e in g:
        if "Page" in e.text:
            return float(value.replace(",", ""))
        value = e.text


def start_end(year, month):
    start = datetime.date(year, month, 1)
    end = start + relativedelta(months=1)
    end -= datetime.timedelta(days=1)
    return start, end


def get_interest(counterparties, save=False):
    interest_amounts = defaultdict(float)
    for cp in counterparties:
        try:
            func = globals()[f"get_{cp}"]
        except KeyError:
            print(f"Missing cp {cp}")
        if cp in ("CITI", "MS"):
            for file in Path(
                f"/home/serenitas/Daily/Serenitas/MonthlyInterest/{cp}_reports"
            ).glob("*.xls*"):
                amount = func(file)
                interest_amounts[cp] = interest_amounts[cp] + amount
        else:
            for file in Path(
                f"/home/serenitas/Daily/Serenitas/MonthlyInterest/{cp}_reports"
            ).glob("*.pdf"):
                g = iter(load_pdf(file))
                amount = func(g)
                interest_amounts[cp] = interest_amounts[cp] + amount
        if not save:
            try:
                shutil.rmtree(
                    f"/home/serenitas/Daily/Serenitas/MonthlyInterest/{cp}_reports"
                )
            except FileNotFoundError:
                pass
    return pd.DataFrame(interest_amounts, index=[0]).T.rename(
        index={"BAML": "BAML_ISDA"}, columns={0: "monthly_statement"}
    )


def main():
    em = ExchangeMessage()
    counterparties = ["BNP", "CITI", "CS", "GS", "MS", "BAML", "JPM"]

    parser = argparse.ArgumentParser(description="determine sender destination")
    parser.add_argument("start")
    parser.add_argument("end", default=datetime.date.today())
    parser.add_argument(
        "--recon",
        action="store_true",
        default=False,
        help="for automation or for monthly",
    )
    parser.add_argument(
        "--save",
        action="store_true",
        default=False,
        help="for automation or for monthly",
    )
    args = parser.parse_args()

    for cp in counterparties:
        download_messages(em, cp, args.start, args.end, recon=args.recon)

    if args.recon:
        df = get_interest(counterparties, save=args.save)
        start, end = start_end(
            datetime.datetime.today().year, datetime.datetime.today().month - 1
        )
        global interest_recon
        interest_recon = pd.merge(
            export_data(start, end).groupby("broker").sum(),
            df,
            how="outer",
            left_index=True,
            right_index=True,
        )
        interest_recon["difference"] = (
            interest_recon["amount"] - interest_recon["monthly_statement"]
        )


if __name__ == "__main__":
    main()