aboutsummaryrefslogtreecommitdiffstats
path: root/python/notebooks/Option Trades.ipynb
blob: 53ceb04cf3c04df0cfa32549cec3b7fa929d4175 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import datetime\n",
    "import pandas as pd\n",
    "import numpy as np\n",
    "\n",
    "from graphics import plot_time_color_map, plot_color_map\n",
    "from analytics import Swaption, BlackSwaption, BlackSwaptionVolSurface, Index, Portfolio\n",
    "from analytics.scenarios import run_swaption_scenarios, run_index_scenarios, run_portfolio_scenarios\n",
    "from scipy.interpolate import SmoothBivariateSpline\n",
    "from db import dbengine"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Delta Chart: Red = Long Risk, Blue = Short Risk"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def plot_trade_scenarios(portf, shock_min=-.15, shock_max=.2, period=-1, vol_time_roll=True):\n",
    "    portf.reset_pv()\n",
    "    earliest_date = min(portf.swaptions, key=lambda x: x.exercise_date).exercise_date\n",
    "    date_range = pd.bdate_range(portf.indices[0].value_date,\n",
    "                                earliest_date - pd.tseries.offsets.BDay(), freq='3B')\n",
    "    vol_shock = np.arange(-0.15, 0.3, 0.01)\n",
    "    spread_shock = np.arange(shock_min, shock_max, 0.01)\n",
    "    index = portf.indices[0].name.split()[1]\n",
    "    series = portf.indices[0].name.split()[3][1:]\n",
    "    vs = BlackSwaptionVolSurface(index, series, value_date=portf.indices[0].value_date)\n",
    "    vol_surface = vs[vs.list(option_type='payer')[-1]]\n",
    "\n",
    "    df = run_portfolio_scenarios(portf, date_range, spread_shock, vol_shock, vol_surface,\n",
    "                                 params=[\"pnl\",\"delta\"])\n",
    "\n",
    "    hy_plot_range = 100 + (500 - portf.indices[0].spread * (1 + spread_shock)) * \\\n",
    "                    abs(portf.indices[0].DV01) / portf.indices[0].notional * 100\n",
    "\n",
    "    shock =  hy_plot_range if index == 'HY' else portf.indices[0].spread * (1 + spread_shock)\n",
    "\n",
    "    plot_time_color_map(df[round(df.vol_shock,2)==0], shock, 'pnl', index=index)\n",
    "    plot_time_color_map(df[round(df.vol_shock,2)==.2], shock, 'pnl', index=index)\n",
    "    plot_color_map(df.loc[date_range[period]], shock, vol_shock, 'pnl', index=index)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Ad hoc\n",
    "option_delta = Index.from_name('IG', 30, '5yr', value_date=datetime.date(2018, 5, 17))\n",
    "option_delta.spread = 61\n",
    "option1 = BlackSwaption(option_delta, datetime.date(2018, 8, 15), 60, option_type=\"payer\")\n",
    "option2 = BlackSwaption(option_delta, datetime.date(2018, 8, 15), 80, option_type=\"payer\")\n",
    "option3 = BlackSwaption(option_delta, datetime.date(2018, 8, 15), 80, option_type=\"payer\")\n",
    "option1.sigma = .381\n",
    "option2.sigma = .545\n",
    "option3.sigma = .69\n",
    "option1.notional = 100_000_000\n",
    "option2.notional = 300_000_000\n",
    "option3.notional = 1\n",
    "option1.direction = 'Long'\n",
    "option2.direction = 'Short'\n",
    "option3.direction = 'Long'\n",
    "#option_delta.notional = 1\n",
    "option_delta.notional = option1.notional * option1.delta + option2.notional * option2.delta + option3.notional * option3.delta\n",
    "option_delta.direction = 'Seller' if option_delta.notional > 0 else 'Buyer'\n",
    "option_delta.notional = abs(option_delta.notional)\n",
    "portf = Portfolio([option1, option2, option3, option_delta])\n",
    "#Plot Scenarios Inputs: Portfolio, spread shock tightening%, spread shock widening%, snapshot period)\n",
    "portf"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "plot_trade_scenarios(portf, -.15, .8, -4, vol_time_roll=False)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Dec Jan 2017 Trade\n",
    "option_delta = Index.from_tradeid(864)\n",
    "option1 = BlackSwaption.from_tradeid(3, option_delta)\n",
    "option2 = BlackSwaption.from_tradeid(4, option_delta)\n",
    "portf = Portfolio([option1, option2, option_delta])\n",
    "#plot_trade_scenarios(portf)\n",
    "\n",
    "#Feb 2017: Sell May Buy April Calendar Trade\n",
    "option_delta = Index.from_tradeid(870)\n",
    "option1 = BlackSwaption.from_tradeid(5, option_delta)\n",
    "option2 = BlackSwaption.from_tradeid(6, option_delta)\n",
    "portf = Portfolio([option1, option2, option_delta])\n",
    "#plot_trade_scenarios(portf)\n",
    "\n",
    "#April 2017: Sell May Buy June Calendar Trade\n",
    "option_delta = Index.from_tradeid(874)\n",
    "option1 = BlackSwaption.from_tradeid(7, option_delta)\n",
    "option2 = BlackSwaption.from_tradeid(8, option_delta)\n",
    "portf = Portfolio([option1, option2, option_delta])\n",
    "#plot_trade_scenarios(portf)\n",
    "\n",
    "#June July 2017 Calendar Trade\n",
    "option_delta_pf = Index.from_tradeid(874)\n",
    "option_delta2_pf = Index.from_tradeid(879)\n",
    "\n",
    "option1_pf = BlackSwaption.from_tradeid(7, option_delta_pf)\n",
    "option2_pf = BlackSwaption.from_tradeid(9, option_delta_pf)\n",
    "option_delta_pf.notional = 50_335_169\n",
    "\n",
    "portf = Portfolio([option1_pf, option2_pf, option_delta_pf])\n",
    "portf.value_date = datetime.date(2017, 5, 17)\n",
    "portf.mark()\n",
    "#plot_trade_scenarios(portf)\n",
    "\n",
    "#July 2017: Buy Sept HY payer spread\n",
    "option_delta = Index.from_tradeid(891)\n",
    "option1 = BlackSwaption.from_tradeid(10, option_delta)\n",
    "option2 = BlackSwaption.from_tradeid(11, option_delta)\n",
    "portf = Portfolio([option1, option2, option_delta])\n",
    "#plot_trade_scenarios(portf)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Look at steepness of volatility - 90 days, .75 vs .25 payer deltas\n",
    "sql_str = \"select b.quotedate, b.ref, b.ref_id, b.expiry, a.delta_pay, a.vol from \" \\\n",
    "          \"swaption_quotes a join swaption_ref_quotes b on a.ref_id = b.ref_id and index = 'IG'\"\n",
    "df = pd.read_sql_query(sql_str, dbengine('serenitasdb'), \n",
    "     index_col=['quotedate'], parse_dates={'quotedate': {'utc': True}})\n",
    "df['days_expiry'] =  (df.expiry - df.index.date).dt.days\n",
    "r_1 = []\n",
    "for i, g in df.groupby(pd.Grouper(freq='D', level='quotedate')):\n",
    "    r = []\n",
    "    for i_1, g_1 in g.groupby(['days_expiry', 'delta_pay']):\n",
    "        r.append([i_1[0], i_1[1], g_1['vol'].mean()])\n",
    "    if len(r) > 0:\n",
    "        temp = np.dstack(r)\n",
    "        f = SmoothBivariateSpline(temp[0][0], temp[0][1], temp[0][2])\n",
    "        r = (f(90, .75) - f(90, .25))[0][0]\n",
    "        r_1.append([i, r])\n",
    "    else:\n",
    "        pass\n",
    "df_1 = pd.DataFrame(r_1, columns=['date', 'steepness'])\n",
    "df_1.set_index('date').plot()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.6.5"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}