1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
|
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "1d37c1d7-e332-4cb3-b228-0045c547ab93",
"metadata": {},
"outputs": [],
"source": [
"import pnl_explain as pl\n",
"import datetime\n",
"from itertools import chain\n",
"from serenitas.utils.db import dbconn\n",
"\n",
"dawndb = dbconn(\"dawndb\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f600c71b-59a9-4f10-beac-37718f6e4016",
"metadata": {},
"outputs": [],
"source": [
"today = datetime.date.today()\n",
"start_date = datetime.date(2022,7,1)\n",
"end_date = datetime.date(2022,11,1)\n",
"strats = {\n",
" \"swaption\": (\"IGOPTDEL\", \"HYOPTDEL\"),\n",
" \"macro_hedge\": (\"HEDGE_MAC\",),\n",
" \"tranche\": (\"IGINX\", \"HYINX\", \"XOINX\", \"EUINX\"),\n",
" \"curve\": (\"SER_ITRXCURVE\", \"SER_IGCURVE\", \"SER_HYCURVE\"),\n",
" \"rmbs_hedge\":(\"HEDGE_MBS\",),\n",
" \"clo_hedge\": (\"HEDGE_CLO\",),\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "79fdf8bb-79a9-48e5-b97e-ad5d862078fd",
"metadata": {},
"outputs": [],
"source": [
"for fund in ['SERCGMAST', 'ISOSEL', 'BOWDST']:\n",
" pnl = {}\n",
" #bond PNL---------------\n",
" for ac in ['CRT', 'Subprime', 'CLO']:\n",
" df_instrument = pl.get_pv(conn=dawndb, \n",
" fund=fund, \n",
" pnl_type = 'bond', \n",
" asset_class = ac, \n",
" start_date = start_date, \n",
" end_date = end_date)\n",
" if not df_instrument.empty:\n",
" pnl[ac] = pl.get_pnl(df_instrument, 'bond')\n",
" #Tranches---------------\n",
" ac = 'tranche'\n",
" pv2=True\n",
" df_instrument = pl.get_pv(conn=dawndb, \n",
" fund=fund, \n",
" pnl_type = ac, \n",
" start_date = start_date, \n",
" end_date = end_date,\n",
" pv2=pv2)\n",
" pnl[ac] = pl.get_pnl(df_instrument, ac, pv2=pv2)\n",
" #swaptions--------------\n",
" ac = 'swaption'\n",
" df_instrument = pl.get_pv(conn=dawndb, \n",
" fund=fund, \n",
" pnl_type = ac, \n",
" start_date = start_date, \n",
" end_date = end_date, \n",
" source_list=['CITI', 'JPM'])\n",
" pnl[ac] = pl.get_pnl(df_instrument, ac)\n",
" #All the cleared indices--------\n",
" for ac in ['macro_hedge', 'curve', 'tranche', 'swaption', 'rmbs_hedge', 'clo_hedge']: \n",
" df_index = pl.get_index_pv(\n",
" start_date, end_date, fund, dawndb, strats[ac]\n",
" )\n",
" pnl[ac+'_index'] = df_index.pv.diff() + df_index[[\"upfront\", \"accrued\"]].sum(axis=1)\n",
" #FX PV-------------\n",
" ac = 'fx_forward'\n",
" df_instrument = pl.get_fx_pv(start_date = start_date,\n",
" end_date = end_date,\n",
" fund=fund)\n",
" pnl_inst = pl.get_pnl(df_instrument, ac)\n",
" pnl_inst.index = pd.to_datetime(pnl_inst.index)\n",
" pnl[ac] = pnl_inst\n",
" pnl_all = pd.concat(pnl, axis=1).fillna(0)\n",
" filename = '/home/serenitas/Daily/' + today.strftime(\"%Y-%m-%d\")+ \"/\" + fund + '_pnl.csv'\n",
" pnl_all.to_csv(filename)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e179cc99-edb1-48b9-b50e-7a5ae25c1e86",
"metadata": {},
"outputs": [],
"source": [
"#check if first day of NAV and if the upfront payment line up. if not, PNL will not work\n",
"#check trade date vs. that NULL NAV/upfront date. If it is termination it is okay\n",
"ac= 'tranche'\n",
"df_instrument = pl.get_pv(conn=dawndb, \n",
" fund=fund, \n",
" pnl_type = ac, \n",
" start_date = start_date, \n",
" end_date = end_date,\n",
" pv2=pv2)\n",
"check_trades = df_instrument.loc[df_instrument['clean_nav'].isna() &\n",
" df_instrument['principal'].notna()]\n",
"cds_trades = pd.read_sql_query(\"SELECT id, trade_date from cds\", dawndb,parse_dates=[\"trade_date\"], index_col=['id'])\n",
"check_trades = pd.merge(check_trades, cds_trades, left_index=True, right_index=True)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.8"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|