aboutsummaryrefslogtreecommitdiffstats
path: root/python/notebooks/Risk Management.ipynb
blob: 8a4a5f72c4ed03cb0074ea7b6bfb973e91095554 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import portfolio_var as port\n",
    "from analytics import Swaption, BlackSwaption, Index, VolatilitySurface, Portfolio\n",
    "from analytics.scenarios import run_swaption_scenarios, run_index_scenarios, run_portfolio_scenarios\n",
    "import datetime\n",
    "import pandas as pd\n",
    "from pandas.tseries.offsets import BDay, BMonthEnd\n",
    "\n",
    "#import exploration.swaption_calendar_spread as spread\n",
    "import exploration.swaption_calendar_spread as spread"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Oct ME Bond HY Equiv\n",
    "report_date = (datetime.date.today() + BMonthEnd(-1)).date()\n",
    "bond_HY_equiv = -.12088\n",
    "percentile = .95"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#The 95%tile \n",
    "df, spread, dur = port.rel_spread_diff(report_date)\n",
    "stress = pd.DataFrame()\n",
    "stress.at[('2SD_widen', 'spread')] = df.quantile(.975) \n",
    "stress.at[('2SD_tighten', 'spread')] = df.quantile(.025) \n",
    "stress.at[('worst_widen', 'spread')] = df.max()\n",
    "stress['pts'] = -stress * spread * dur/100\n",
    "stress['nav_impact'] = bond_HY_equiv * stress['pts']"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "stress"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "port.cleared_cds_margins(report_date, percentile)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "port.index_curve_margins(report_date)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.6.1"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}