aboutsummaryrefslogtreecommitdiffstats
path: root/python/notebooks/Risk Management.ipynb
blob: a650b1c35922c998ae9aba522a30e3340b2a71a5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import portfolio_var as port\n",
    "from analytics import Swaption, BlackSwaption, Index, VolatilitySurface, Portfolio\n",
    "from analytics.scenarios import run_swaption_scenarios, run_index_scenarios, run_portfolio_scenarios\n",
    "import datetime\n",
    "import pandas as pd\n",
    "\n",
    "#import exploration.swaption_calendar_spread as spread\n",
    "import exploration.swaption_calendar_spread as spread"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "df, spread, dur = port.rel_spread_diff()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#The 95%tile \n",
    "stress = pd.DataFrame(index = ['widen', 'tighten'], columns=['pts'])\n",
    "stress.loc['widen'] = df.quantile(.975) \n",
    "stress.loc['tighten'] = df.quantile(.025)\n",
    "stress = -stress * spread * dur/100"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#August ME Bond HY Equiv\n",
    "bond_HY_equiv = .1652\n",
    "stress['nav_impact'] = bond_HY_equiv * stress"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Swaptions\n",
    "#Aug 2018: Buy Sept HY payer spread\n",
    "option_delta = Index.from_tradeid(891)\n",
    "option1 = BlackSwaption.from_tradeid(10, option_delta)\n",
    "option2 = BlackSwaption.from_tradeid(11, option_delta)\n",
    "portf = Portfolio([option1, option2, option_delta])\n",
    "portf.trade_date = datetime.date(2017, 8, 31)\n",
    "portf.mark()\n",
    "orig_pv = portf.pv\n",
    "orig_ref = portf.ref"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "for x, y in stress.pts.iteritems():\n",
    "    portf.ref = orig_ref + y\n",
    "    stress[x] = portf.pv - orig_pv"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "stress"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.6.1"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}