aboutsummaryrefslogtreecommitdiffstats
path: root/python/notebooks/Tranche calculator.ipynb
blob: 394618a3d2dbf6b8911176535d76cb96cf14c383 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "import numpy as np\n",
    "\n",
    "from analytics import TrancheBasket, ManualTrancheBasket\n",
    "from datetime import date"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def display_result(basket_index):\n",
    "    thetas = basket_index.tranche_thetas()\n",
    "    result = pd.concat([pd.DataFrame(basket_index.rho[0:4], index=thetas.index, columns=['att_corr']),\n",
    "           pd.DataFrame(basket_index.tranche_pvs().bond_price, index=thetas.index, columns=['price']),\n",
    "           basket_index.tranche_deltas(),\n",
    "           thetas],\n",
    "           axis=1)\n",
    "    result['net_theta'] = result.theta - new_index.theta()[0] * result.delta\n",
    "    return result"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "index_type = 'HY'\n",
    "series = 35\n",
    "value_date = date.today()\n",
    "new_index = ManualTrancheBasket(index_type, series, \"5yr\", value_date=value_date, ref=104.625, quotes=[43, 92.5, 110, 120.27])\n",
    "new_index.tweak()\n",
    "new_index.build_skew()\n",
    "result = display_result(new_index)\n",
    "result                 "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Implied SS\n",
    "implied_ss = ((new_index.index_pv().bond_price - new_index.accrued()) -\n",
    "              ((new_index.K[1]-new_index.K[0]) * result.price[0] +\n",
    "              (new_index.K[2]-new_index.K[1]) * result.price[1] +\n",
    "              (new_index.K[3]-new_index.K[2]) * result.price[2]))/(new_index.K[4] - new_index.K[3])\n",
    "implied_ss"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Build previous series skew to price this new series\n",
    "base_index = TrancheBasket(index_type, series-2, \"5yr\")\n",
    "base_index.tweak()\n",
    "base_index.build_skew()\n",
    "\n",
    "new_index.rho = base_index.map_skew(new_index)\n",
    "result = display_result(new_index)\n",
    "result"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.5"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}