aboutsummaryrefslogtreecommitdiffstats
path: root/python/notebooks/brinker_reports.ipynb
blob: 9ea8f5ef70658df3e351bd9dd15bbb796d3c75b5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import datetime\n",
    "from pandas.tseries.offsets import BDay, MonthEnd\n",
    "import globeop_reports as go\n",
    "import pandas as pd\n",
    "import analytics\n",
    "import numpy as np\n",
    "\n",
    "from analytics.index_data import get_index_quotes\n",
    "from analytics.scenarios import run_portfolio_scenarios\n",
    "from analytics import BlackSwaption, CreditIndex, BlackSwaptionVolSurface, Portfolio,DualCorrTranche\n",
    "\n",
    "from utils.db import dbconn, dbengine\n",
    "\n",
    "from risk.tranches import get_tranche_portfolio\n",
    "from risk.swaptions import get_swaption_portfolio\n",
    "from risk.bonds import subprime_risk, clo_risk, crt_risk\n",
    "\n",
    "dawn_engine = dbengine('dawndb')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "################################### Average Portfolio Sales Turnover - as of last monthend from today\n",
    "#Actually: Rolling months sum of (total bond sales proceeds + paydown)/monthly NAV\n",
    "fund='BRINKER'\n",
    "sql_string = \"SELECT * FROM bonds WHERE buysell IS False and fund = %s order by trade_date desc\"\n",
    "df = pd.read_sql_query(sql_string, dawn_engine,\n",
    "                       parse_dates={'lastupdate':{'utc':True}, 'trade_date': {}, 'settle_date':{}},\n",
    "                       params=[fund,],\n",
    "                       index_col = 'trade_date')\n",
    "df = df.groupby(pd.Grouper(freq='M')).sum()\n",
    "\n",
    "brinker_nav = pd.read_csv(\n",
    "        \"/home/serenitas/edwin/Python/brinker_nav.csv\",\n",
    "        parse_dates=[\"date\"],\n",
    "        index_col=[\"date\"])\n",
    "\n",
    "start_date = datetime.date(2019,3,18)\n",
    "end_date = datetime.date.today()\n",
    "cf = pd.read_sql_query(\"SELECT * FROM cashflow_history where date > %s and date <= %s\", dawn_engine,\n",
    "                       params=[start_date, end_date],\n",
    "                       parse_dates=['date'],\n",
    "                       index_col=['date']).sort_index()\n",
    "sql_string = \"SELECT description, identifier, notional, price, factor FROM risk_positions(%s, %s, 'BRINKER')\"\n",
    "pos = {}\n",
    "for d in cf.index.unique():\n",
    "    for ac in ['Subprime', 'CRT']:\n",
    "        pos[d, ac] = pd.read_sql_query(sql_string, dawn_engine, params=[d.date(), ac])\n",
    "pos = pd.concat(pos, names=['date', 'asset_class'])\n",
    "pos = pos.reset_index(level=[1,2])\n",
    "\n",
    "cf_1 = pd.merge_asof(cf, pos.sort_index(), left_index=True, right_index=True, by='identifier')\n",
    "cf_1 = cf_1.dropna(subset=['notional'])\n",
    "cf_1 = cf_1[(cf_1.principal_bal != 0) & (cf_1.principal != 0)]\n",
    "cf_1['paydown'] = cf_1.apply(lambda df: df.notional * df.factor/df.principal_bal * df.principal, axis=1)\n",
    "paydowns = cf_1.paydown.groupby(pd.Grouper(freq='M')).sum()\n",
    "turnover = pd.concat([paydowns, df.principal_payment, df.accrued_payment], axis=1).fillna(0)\n",
    "brinker_nav = brinker_nav.groupby(pd.Grouper(freq='M')).last()\n",
    "turnover = (turnover.sum(axis=1)/brinker_nav.nav).rolling(min(13, len(turnover))-1).sum()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}