aboutsummaryrefslogtreecommitdiffstats
path: root/python/notebooks/brinker_reports.ipynb
blob: 6f1757dcd8c41e7e438e37681ad43825efc5127a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import datetime\n",
    "import globeop_reports as go\n",
    "import pandas as pd\n",
    "import serenitas.analytics\n",
    "import numpy as np\n",
    "\n",
    "from pandas.tseries.offsets import BDay, MonthEnd, BMonthEnd\n",
    "from pnl_explain import get_bond_pv\n",
    "from serenitas.utils.db import dbconn, dbengine\n",
    "\n",
    "dawn_engine = dbengine('dawndb')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "################################### Average Portfolio Sales Turnover - as of last monthend from today\n",
    "#Actually: Rolling months sum of (total bond sales proceeds + paydown)/monthly NAV\n",
    "import warnings\n",
    "warnings.filterwarnings('ignore')\n",
    "fund='BRINKER'\n",
    "df_inst={}\n",
    "for ac in ['CRT', 'Subprime', 'CLO']:\n",
    "    df_inst[ac] = get_bond_pv(\n",
    "            datetime.date.today() - BMonthEnd(24),\n",
    "            datetime.date.today() - BMonthEnd(),\n",
    "            fund=fund,\n",
    "            conn=dbconn(\"dawndb\"),\n",
    "            asset_class =ac)\n",
    "df_inst = pd.concat(df_inst)\n",
    "df = df_inst[(df_inst.principal_payment < 0) | \n",
    "             (df_inst.principal > 0)]\n",
    "df['principal_payment'] = df['principal_payment'].abs()\n",
    "df = df.reset_index(level=[0,2], drop=True)\n",
    "df = df[['principal','principal_payment']].groupby(pd.Grouper(freq='M')).sum().sum(axis=1)\n",
    "brinker_nav = pd.read_sql_query(\"select distinct accounting_date, total_net_assets from bbh_val order by accounting_date desc\",\n",
    "                dawn_engine,\n",
    "                parse_dates=[\"accounting_date\"],\n",
    "                index_col=[\"accounting_date\"])\n",
    "\n",
    "brinker_nav = brinker_nav.groupby(pd.Grouper(freq='M')).last()\n",
    "turnover = df.rolling(min(13, len(df))-1).sum()/brinker_nav.total_net_assets\n",
    "turnover"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#PNL over different time frames\n",
    "sql_string = \"SELECT * from bbh_val\"\n",
    "df = pd.read_sql_query(sql_string, dawn_engine,\n",
    "                       parse_dates=['accounting_date'],\n",
    "                       index_col = 'accounting_date')\n",
    "sql_string = \"SELECT * from subscription_and_fee where fund = 'BRINKER'\"\n",
    "flow = pd.read_sql_query(sql_string, dawn_engine,\n",
    "                       parse_dates=['date'],\n",
    "                       index_col = 'date')\n",
    "df = df.groupby('accounting_date').nth(-1)\n",
    "df = df.merge(flow, how='left', left_index=True, right_index=True)\n",
    "df.fillna(0, inplace=True)\n",
    "df['beg_nav'] = df.total_net_assets.shift(1) + df.subscription.shift(1) - df.redemption\n",
    "df.loc['2019-3-19','total_net_asset'] = 110000000\n",
    "df['ret'] = (df.total_net_assets - df.beg_nav)/df.beg_nav\n",
    "cum_ret = (df.ret+1).cumprod()\n",
    "monthly= cum_ret.groupby(pd.Grouper(freq='M')).nth(-1)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#PNL breakdown\n",
    "sql_string = \"SELECT * from bbh_pnl\"\n",
    "pnl = pd.read_sql_query(sql_string, dawn_engine,\n",
    "                       parse_dates=['accounting_date'])\n",
    "sql_string = \"SELECT * from securities\"\n",
    "bonds =  pd.read_sql_query(sql_string, dawn_engine, index_col = 'cusip')\n",
    "pnl = pnl.merge(bonds, how='left', left_on='security_id', right_on='cusip')\n",
    "pnl.loc[(pnl.sub_security_type_code == 'CXT'),'asset_class'] = 'Corporate Tranches'\n",
    "pnl.loc[(pnl.sub_security_type_code == 'CDX'),'asset_class'] = 'Corporate Tranches'\n",
    "pnl.loc[(pnl.sub_security_type_code == 'SWP'),'asset_class'] = 'IR-Hedges'\n",
    "pnl.asset_class.fillna('Others', inplace=True)\n",
    "pnl.set_index(['accounting_date', 'asset_class'], inplace=True)\n",
    "base_change = pnl['base_change_total'].groupby(['accounting_date', 'asset_class']).sum()\n",
    "base_change.unstack()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Export to spreadsheet\n",
    "df.sort_index(ascending=False)[['total_net_assets', 'subscription', 'redemption']].to_clipboard()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Export to spreadsheet 2\n",
    "base_change.unstack().sort_index(ascending=False).to_clipboard()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#load bbh val reports\n",
    "import load_bbh_reports as load\n",
    "load_date = datetime.date(2020,9,7)\n",
    "load.load_reports(load_date)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}