aboutsummaryrefslogtreecommitdiffstats
path: root/python/notebooks/brinker_reports.ipynb
blob: 58b8dde7ea492fccb0b277f4434ac3c9d3b9582f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import datetime\n",
    "from pandas.tseries.offsets import BDay, MonthEnd\n",
    "import globeop_reports as go\n",
    "import pandas as pd\n",
    "import analytics\n",
    "import numpy as np\n",
    "\n",
    "from analytics.index_data import get_index_quotes\n",
    "from analytics.scenarios import run_portfolio_scenarios\n",
    "from analytics import BlackSwaption, CreditIndex, BlackSwaptionVolSurface, Portfolio,DualCorrTranche\n",
    "\n",
    "from utils.db import dbconn, dbengine\n",
    "\n",
    "from risk.tranches import get_tranche_portfolio\n",
    "from risk.swaptions import get_swaption_portfolio\n",
    "from risk.bonds import subprime_risk, clo_risk, crt_risk\n",
    "\n",
    "dawn_engine = dbengine('dawndb')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "################################### Average Portfolio Sales Turnover - as of last monthend from today\n",
    "#Actually: Rolling months sum of (total bond sales proceeds + paydown)/monthly NAV\n",
    "fund='BRINKER'\n",
    "sql_string = \"SELECT * FROM bonds WHERE buysell IS False and fund = %s order by trade_date desc\"\n",
    "df = pd.read_sql_query(sql_string, dawn_engine,\n",
    "                       parse_dates={'lastupdate':{'utc':True}, 'trade_date': {}, 'settle_date':{}},\n",
    "                       params=[fund,],\n",
    "                       index_col = 'trade_date')\n",
    "df = df.groupby(pd.Grouper(freq='M')).sum()\n",
    "\n",
    "brinker_nav = pd.read_csv(\n",
    "        \"/home/serenitas/edwin/Python/brinker_nav.csv\",\n",
    "        parse_dates=[\"date\"],\n",
    "        index_col=[\"date\"])\n",
    "\n",
    "start_date = datetime.date(2019,3,18)\n",
    "end_date = datetime.date.today()\n",
    "cf = pd.read_sql_query(\"SELECT * FROM cashflow_history where date > %s and date <= %s\", dawn_engine,\n",
    "                       params=[start_date, end_date],\n",
    "                       parse_dates=['date'],\n",
    "                       index_col=['date']).sort_index()\n",
    "sql_string = \"SELECT description, identifier, notional, price, factor FROM risk_positions(%s, %s, 'BRINKER')\"\n",
    "pos = {}\n",
    "for d in cf.index.unique():\n",
    "    for ac in ['Subprime', 'CRT']:\n",
    "        pos[d, ac] = pd.read_sql_query(sql_string, dawn_engine, params=[d.date(), ac])\n",
    "pos = pd.concat(pos, names=['date', 'asset_class'])\n",
    "pos = pos.reset_index(level=[1,2])\n",
    "\n",
    "cf_1 = pd.merge_asof(cf, pos.sort_index(), left_index=True, right_index=True, by='identifier')\n",
    "cf_1 = cf_1.dropna(subset=['notional'])\n",
    "cf_1 = cf_1[(cf_1.principal_bal != 0) & (cf_1.principal != 0)]\n",
    "cf_1['paydown'] = cf_1.apply(lambda df: df.notional * df.factor/df.principal_bal * df.principal, axis=1)\n",
    "paydowns = cf_1.paydown.groupby(pd.Grouper(freq='M')).sum()\n",
    "turnover = pd.concat([paydowns, df.principal_payment, df.accrued_payment], axis=1).fillna(0)\n",
    "brinker_nav = brinker_nav.groupby(pd.Grouper(freq='M')).last()\n",
    "turnover = (turnover.sum(axis=1)/brinker_nav.nav).rolling(min(13, len(turnover))-1).sum()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#PNL over different time frames\n",
    "sql_string = \"SELECT * from bbh_val\"\n",
    "df = pd.read_sql_query(sql_string, dawn_engine,\n",
    "                       parse_dates=['accounting_date'],\n",
    "                       index_col = 'accounting_date')\n",
    "sql_string = \"SELECT * from subscription_and_fee where fund = 'BRINKER'\"\n",
    "flow = pd.read_sql_query(sql_string, dawn_engine,\n",
    "                       parse_dates=['date'],\n",
    "                       index_col = 'date')\n",
    "df = df.groupby('accounting_date').nth(-1)\n",
    "df = df.merge(flow, how='left', left_index=True, right_index=True)\n",
    "df.fillna(0, inplace=True)\n",
    "df['beg_nav'] = df.total_net_assets.shift(1) + df.subscription.shift(1) - df.redemption\n",
    "df.loc['2019-3-19','beg_nav'] = 110000000\n",
    "df['ret'] = (df.total_net_assets - df.beg_nav)/df.beg_nav\n",
    "cum_ret = (df.ret+1).cumprod()\n",
    "\n",
    "monthly= cum_ret.groupby(pd.Grouper(freq='M')).nth(-1)\n",
    "quarterly = cum_ret.groupby(pd.Grouper(freq='Q')).nth(-1)\n",
    "monthly.pct_change(), quarterly.pct_change()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#PNL breakdown\n",
    "sql_string = \"SELECT * from bbh_pnl\"\n",
    "pnl = pd.read_sql_query(sql_string, dawn_engine,\n",
    "                       parse_dates=['accounting_date'])\n",
    "sql_string = \"SELECT * from securities\"\n",
    "bonds =  pd.read_sql_query(sql_string, dawn_engine, index_col = 'cusip')\n",
    "pnl = pnl.merge(bonds, how='left', left_on='security_id', right_on='cusip')\n",
    "pnl.loc[(pnl.sub_security_type_code == 'CXT'),'asset_class'] = 'Tranches'\n",
    "pnl.loc[(pnl.sub_security_type_code == 'CDX'),'asset_class'] = 'Tranches'\n",
    "pnl.loc[(pnl.sub_security_type_code == 'SWP'),'asset_class'] = 'IR-Hedges'\n",
    "pnl.asset_class.fillna('Others', inplace=True)\n",
    "pnl.set_index(['accounting_date', 'asset_class'], inplace=True)\n",
    "base_change = pnl['base_change_total'].groupby(['accounting_date', 'asset_class']).sum()\n",
    "base_change.unstack()\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.1"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}