1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
|
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import datetime\n",
"import globeop_reports as go\n",
"import pandas as pd\n",
"import analytics\n",
"import numpy as np\n",
"\n",
"from pandas.tseries.offsets import BDay, BMonthEnd\n",
"from analytics.scenarios import run_portfolio_scenarios\n",
"from risk.portfolio import build_portfolio, generate_vol_surface\n",
"from pathlib import Path"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Set dates"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"position_date = (datetime.date.today() - BMonthEnd(1)).date()\n",
"spread_date = position_date\n",
"analytics._local = False\n",
"analytics.init_ontr(spread_date)\n",
"base_dir = Path('/home/serenitas/Daily/Risk/')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Run credit spread scenarios"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"spread_shock = np.array([-100., -25., 1., +25. , 100.])\n",
"spread_shock /= analytics._ontr['HY'].spread\n",
"portf, _ = build_portfolio(position_date, spread_date)\n",
"vol_surface = generate_vol_surface(portf, 5)\n",
"portf.reset_pv()\n",
"scens = run_portfolio_scenarios(portf, date_range=[pd.Timestamp(spread_date)], params=['pnl'],\n",
" spread_shock=spread_shock,\n",
" vol_shock=[0.0],\n",
" corr_shock=[0.0],\n",
" vol_surface=vol_surface)\n",
"scens = scens.sum(axis=1)\n",
"scens.to_csv(base_dir / f\"csscen_{position_date:%Y%m%d}.csv\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Jump to default"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"_, portf = build_portfolio(position_date, spread_date)\n",
"jtd = portf.jtd_single_names()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.6"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|