aboutsummaryrefslogtreecommitdiffstats
path: root/python/notebooks/risk_sabo.ipynb
blob: 1ee43fdb46bcac32c3c4bd392bcf3ce293520b07 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import datetime\n",
    "import globeop_reports as go\n",
    "import pandas as pd\n",
    "import analytics\n",
    "import numpy as np\n",
    "\n",
    "from pandas.tseries.offsets import BDay, BMonthEnd\n",
    "from analytics.scenarios import run_portfolio_scenarios\n",
    "from risk.portfolio import build_portfolio, generate_vol_surface\n",
    "from pathlib import Path"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Set dates"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "position_date = (datetime.date.today() - BMonthEnd(1)).date()\n",
    "spread_date = position_date\n",
    "analytics._local = False\n",
    "analytics.init_ontr(spread_date)\n",
    "base_dir = Path('/home/serenitas/Daily/Risk/')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Run credit spread scenarios"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "spread_shock = np.array([-100., -25., 1., +25. , 100.])\n",
    "spread_shock /= analytics._ontr['HY'].spread\n",
    "portf, _ = build_portfolio(position_date, spread_date)\n",
    "vol_surface = generate_vol_surface(portf, 5)\n",
    "portf.reset_pv()\n",
    "scens = run_portfolio_scenarios(portf, date_range=[pd.Timestamp(spread_date)], params=['pnl'],\n",
    "                                spread_shock=spread_shock,\n",
    "                                vol_shock=[0.0],\n",
    "                                corr_shock=[0.0],\n",
    "                                vol_surface=vol_surface)\n",
    "scens = scens.sum(axis=1)\n",
    "scens.to_csv(base_dir / f\"csscen_{position_date:%Y%m%d}.csv\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Jump to default"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "_, portf = build_portfolio(position_date, spread_date)\n",
    "jtd = portf.jtd_single_names()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}