aboutsummaryrefslogtreecommitdiffstats
path: root/python/notebooks/risk_sabo.ipynb
blob: 1697de6b87382454fdaa65fdb77f0d95987a0a6f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import datetime\n",
    "import pandas as pd\n",
    "import serenitas.analytics\n",
    "import numpy as np\n",
    "\n",
    "from pandas.tseries.offsets import BDay, BMonthEnd\n",
    "from serenitas.analytics.scenarios import run_portfolio_scenarios\n",
    "from risk.portfolio import build_portfolio, generate_vol_surface\n",
    "from pathlib import Path\n",
    "\n",
    "from serenitas.analytics.index_data import load_all_curves\n",
    "from serenitas.utils.db import serenitas_pool"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "run_date = datetime.date.today()\n",
    "serenitas.analytics._local = False\n",
    "base_dir = Path('/home/serenitas/Daily/Risk/')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Run credit spread scenarios"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "scenarios = []\n",
    "for position_date in pd.date_range((datetime.date.today() - BMonthEnd(6)), (datetime.date.today() - BMonthEnd()), freq=\"BM\"):\n",
    "    spread_date = position_date\n",
    "    spread_shock = np.array([-100., -25., 1., +25. , 100.])\n",
    "    serenitas.analytics.init_ontr(spread_date)\n",
    "    spread_shock /= serenitas.analytics._ontr['HY'].spread\n",
    "    portf, _ = build_portfolio(position_date.date(), spread_date.date())\n",
    "    vol_surface = generate_vol_surface(portf, 5)\n",
    "    portf.reset_pv()\n",
    "    scens = run_portfolio_scenarios(portf, date_range=[pd.Timestamp(spread_date)], params=['pnl', 'hy_equiv'],\n",
    "                                    spread_shock=spread_shock,\n",
    "                                    vol_shock=[0.0],\n",
    "                                    corr_shock=[0.0],\n",
    "                                    vol_surface=vol_surface)\n",
    "\n",
    "    strategies = {}\n",
    "    strategies['options'] = ['HYOPTDEL', 'HYPAYER', 'HYREC', \n",
    "                            'IGOPTDEL', 'IGPAYER', 'IGREC']\n",
    "    strategies['tranches'] = ['HYSNR', 'HYMEZ', 'HYINX', 'HYEQY', \n",
    "                            'IGSNR', 'IGMEZ', 'IGINX', 'IGEQY', \n",
    "                            'EUSNR', 'EUMEZ', 'EUINX', 'EUEQY', \n",
    "                            'XOSNR', 'XOMEZ', 'XOINX', 'XOEQY', \n",
    "                            'BSPK']\n",
    "\n",
    "    scens = scens.xs((0.0, 0.0), level=['vol_shock', 'corr_shock'])\n",
    "    scens.columns.names=['strategy', 'trade_id', 'scen_type']\n",
    "\n",
    "    results = {}\n",
    "    for i, g in scens.groupby(level='scen_type', axis =1):\n",
    "        temp = g.groupby(level='strategy', axis =1).sum()\n",
    "        for key, item in strategies.items():\n",
    "            exist_columns = set(temp.columns).intersection(item)\n",
    "            temp[key] = temp[exist_columns].sum(axis=1)\n",
    "            temp.drop(exist_columns, axis=1, inplace=True)\n",
    "        temp['total'] = temp.sum(axis = 1)\n",
    "        results[i] = temp\n",
    "    scenarios.append(pd.concat(results))\n",
    "pd.concat(scenarios).to_csv(base_dir / f\"csscen_{run_date:%Y%m%d}.csv\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Jump to default - monthly"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "for position_date in pd.date_range((datetime.date.today() - BMonthEnd(2)), (datetime.date.today() - BMonthEnd(1)), freq=\"BM\"):\n",
    "    spread_date = position_date\n",
    "    _, portf = build_portfolio(position_date.date(), spread_date.date())\n",
    "    jtd = portf.jtd_single_names()\n",
    "    conn = serenitas_pool.getconn()\n",
    "    surv_curves = load_all_curves(conn, spread_date.date())\n",
    "    serenitas_pool.putconn(conn)\n",
    "    surv_curves['spread'] = surv_curves['curve'].apply(lambda sc: sc.to_series(forward=False)[5] * (1-sc.recovery_rates[5]))\n",
    "    jtd_sabo = jtd[[jtd.columns[0]]].join(surv_curves.groupby(level=0).first()[['name', 'company_id', 'spread']])\n",
    "    jtd_sabo.columns = ['jtd', 'name', 'company_id', 'spread']\n",
    "    jtd_sabo = jtd_sabo.groupby(['company_id', 'name']).sum()\n",
    "    jtd_sabo.to_csv(base_dir / f\"jtd_{position_date:%Y%m%d}.csv\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Jump to default - today"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "position_date = (datetime.date.today() - BDay(1))\n",
    "spread_date = position_date\n",
    "_, portf = build_portfolio(position_date.date(), spread_date.date())\n",
    "jtd = portf.jtd_single_names()\n",
    "conn = serenitas_pool.getconn()\n",
    "surv_curves = load_all_curves(conn, spread_date.date())\n",
    "serenitas_pool.putconn(conn)\n",
    "surv_curves['spread'] = surv_curves['curve'].apply(lambda sc: sc.to_series(forward=False)[5] * (1-sc.recovery_rates[5]))\n",
    "jtd_sabo = jtd[[jtd.columns[0]]].join(surv_curves.groupby(level=0).first()[['name', 'company_id', 'spread']])\n",
    "jtd_sabo.columns = ['jtd', 'name', 'company_id', 'spread']\n",
    "jtd_sabo = jtd_sabo.groupby(['company_id', 'name']).sum()\n",
    "jtd_sabo.to_csv(base_dir / f\"jtd_{position_date:%Y%m%d}.csv\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3.9.1 64-bit",
   "language": "python",
   "name": "python39164bit6ddd573894c04d6a858a9a58880cc9d4"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.1-final"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}