aboutsummaryrefslogtreecommitdiffstats
path: root/python/notebooks/risk_sabo.ipynb
blob: c220d23c0f6aa5f9f71d1b091d8ae8558f890e10 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import datetime\n",
    "import pandas as pd\n",
    "import serenitas.analytics\n",
    "import numpy as np\n",
    "\n",
    "from pandas.tseries.offsets import BDay, BMonthEnd\n",
    "from serenitas.analytics.scenarios import run_portfolio_scenarios\n",
    "from risk.portfolio import build_portfolio, generate_vol_surface\n",
    "from pathlib import Path\n",
    "\n",
    "from serenitas.analytics.index_data import load_all_curves\n",
    "from serenitas.utils.db import serenitas_pool"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "run_date = datetime.date.today()\n",
    "serenitas.analytics._local = False\n",
    "base_dir = Path('/home/serenitas/Daily/Risk/')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Run credit spread scenarios"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "scenarios = []\n",
    "for position_date in pd.date_range((datetime.date.today() - BMonthEnd(2)), (datetime.date.today() - BMonthEnd(1)), freq=\"BM\"):\n",
    "    spread_date = position_date\n",
    "    spread_shock = np.array([-100., -25., 1., +25. , 100.])\n",
    "    serenitas.analytics.init_ontr(spread_date)\n",
    "    spread_shock /= serenitas.analytics._ontr['HY'].spread\n",
    "    portf, _ = build_portfolio(position_date.date(), spread_date.date())\n",
    "    vol_surface = generate_vol_surface(portf, 5)\n",
    "    portf.reset_pv()\n",
    "    scens = run_portfolio_scenarios(portf, date_range=[pd.Timestamp(spread_date)], params=['pnl'],\n",
    "                                    spread_shock=spread_shock,\n",
    "                                    vol_shock= [0.0],\n",
    "                                    corr_shock=[0.0],\n",
    "                                    vol_surface=vol_surface)\n",
    "    scenarios.append(scens.sum(axis=1))\n",
    "pd.concat(scenarios).to_csv(base_dir / f\"csscen_{run_date:%Y%m%d}.csv\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Jump to default"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "for position_date in pd.date_range((datetime.date.today() - BMonthEnd(12)), (datetime.date.today() - BMonthEnd(1)), freq=\"BM\"):\n",
    "    spread_date = position_date\n",
    "    _, portf = build_portfolio(position_date.date(), spread_date.date())\n",
    "    jtd = portf.jtd_single_names()\n",
    "    conn = serenitas_pool.getconn()\n",
    "    surv_curves = load_all_curves(conn, spread_date.date())\n",
    "    serenitas_pool.putconn(conn)\n",
    "    surv_curves['spread'] = surv_curves['curve'].apply(lambda sc: sc.to_series(forward=False)[5] * (1-sc.recovery_rates[5]))\n",
    "    jtd_sabo = jtd[[jtd.columns[0]]].join(surv_curves.groupby(level=0).first()[['name', 'company_id', 'spread']])\n",
    "    jtd_sabo.columns = ['jtd', 'name', 'company_id', 'spread']\n",
    "    jtd_sabo = jtd_sabo.groupby(['company_id', 'name']).sum()\n",
    "    jtd_sabo.to_csv(base_dir / f\"jtd_{position_date:%Y%m%d}.csv\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3.9.1 64-bit",
   "language": "python",
   "name": "python39164bitf8da796bd4214fb9a205dc5a90db6a8a"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.1-final"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}