1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
|
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import datetime\n",
"import globeop_reports as go\n",
"import pandas as pd\n",
"import analytics\n",
"import numpy as np\n",
"\n",
"from pandas.tseries.offsets import BDay, BMonthEnd\n",
"from analytics.scenarios import run_portfolio_scenarios\n",
"from risk.portfolio import build_portfolio, generate_vol_surface\n",
"from pathlib import Path"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Set dates"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"position_date = (datetime.date.today() - BMonthEnd(1)).date()\n",
"spread_date = position_date\n",
"analytics._local = False\n",
"analytics.init_ontr(spread_date)\n",
"base_dir = Path('/home/serenitas/Daily/Risk/')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Run credit spread scenarios"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"spread_shock = np.array([-100., -25., 1., +25. , 100.])\n",
"spread_shock /= analytics._ontr['HY'].spread\n",
"portf, _ = build_portfolio(position_date, spread_date)\n",
"vol_surface = generate_vol_surface(portf, 5)\n",
"portf.reset_pv()\n",
"scens = run_portfolio_scenarios(portf, date_range=[pd.Timestamp(spread_date)], params=['pnl'],\n",
" spread_shock=spread_shock,\n",
" vol_shock=[0.0],\n",
" corr_shock=[0.0],\n",
" vol_surface=vol_surface)\n",
"scens = scens.sum(axis=1)\n",
"scens.to_csv(base_dir / f\"csscen_{position_date:%Y%m%d}.csv\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Jump to default"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"_, portf = build_portfolio(position_date, spread_date)\n",
"jtd = portf.jtd_single_names()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from analytics.index_data import load_all_curves\n",
"from utils.db import serenitas_pool\n",
"conn = serenitas_pool.getconn()\n",
"surv_curves = load_all_curves(conn, spread_date)\n",
"serenitas_pool.putconn(conn)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"jtd_sabo = jtd[[jtd.columns[0]]].join(surv_curves.groupby(level=0).first()[['name', 'company_id']])\n",
"jtd_sabo.columns = ['jtd', 'name', 'company_id']\n",
"jtd_sabo.to_csv(base_dir / f\"jtd_{position_date:%Y%m%d}.csv\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.6"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|