aboutsummaryrefslogtreecommitdiffstats
path: root/python/notebooks/swaption_risk.ipynb
blob: 00b5db551fe60bc56d546f574c2f54a1c4bcf6d7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# better formatting for large floats\n",
    "import pandas as pd\n",
    "pd.options.display.float_format = \"{:,.2f}\".format"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from risk.swaptions import get_swaption_portfolio\n",
    "import datetime\n",
    "from utils.db import dbconn\n",
    "from analytics import init_ontr\n",
    "conn = dbconn('dawndb')\n",
    "conn.autocommit = True\n",
    "init_ontr()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "portf = get_swaption_portfolio(datetime.date.today(), conn, source_list=['GS'])\n",
    "portf"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "df = portf._todf()\n",
    "positions = df.set_index(\"Index\")[[\"Delta\", \"Notional\"]].prod(axis=1).groupby(level=\"Index\").sum()\n",
    "positions.name = 'current_delta'\n",
    "gamma = df.set_index(\"Index\")[[\"Gamma\", \"Notional\"]].prod(axis=1).groupby(level=\"Index\").sum()\n",
    "gamma.name = 'gamma'"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "hedges = pd.read_sql_query(\"SELECT security_desc, notional FROM list_cds_positions_by_strat(%s) \"\n",
    "                           \"WHERE folder in ('IGOPTDEL', 'HYOPTDEL')\",\n",
    "                           conn, params=(datetime.date.today(),))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def f(s):\n",
    "    l = s.split(\" \")\n",
    "    return f\"{l[1]}{l[3][1:]} {l[4].lower()}r\"\n",
    "\n",
    "hedges[\"Index\"] = hedges[\"security_desc\"].apply(f)\n",
    "hedges = hedges.rename(columns={\"notional\": \"current hedge\"})\n",
    "hedges = hedges.set_index(\"Index\")[\"current hedge\"]\n",
    "hedges = hedges.reindex(positions.index, fill_value=0.)\n",
    "risk = pd.concat([hedges, positions, gamma], axis=1)\n",
    "risk['net_delta'] = risk[\"current hedge\"] + risk.current_delta\n",
    "risk"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}