1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
|
import cvxpy
import datetime
import math
import numpy as np
import pandas as pd
from pandas.tseries.offsets import BDay
from arch import arch_model
from db import dbengine
from scipy.interpolate import interp1d
from analytics import Index
serenitasdb = dbengine('serenitasdb')
def get_daily_pnl(index, series, tenor, coupon=1):
sql_str = "SELECT date, adjcloseprice AS close, closespread AS spread, duration, theta FROM index_quotes " \
"WHERE index=%s and series=%s and tenor = %s"
df = pd.read_sql_query(sql_str, serenitasdb, parse_dates=['date'],
index_col=['date'], params=(index, series, tenor))
df.sort_index(inplace=True)
df['dt'] = df.index.to_series().diff().astype('timedelta64[D]')
df['pnl'] = df['close'].ffill().diff() + df.dt/360*coupon
return df
def daily_spreads(index, series, tenor):
"""computes daily spreads returns
Parameters
----------
index : string
series : int
tenor : string
"""
sql_str = "SELECT date, closespread AS spread FROM index_quotes " \
"WHERE index=%s and series=%s and tenor = %s"
df = pd.read_sql_query(sql_str, serenitasdb, parse_dates=['date'], index_col=['date'],
params=(index.upper(), series, tenor))
df.sort_index(inplace=True)
return df.spread.pct_change().dropna()
def index_returns(date=None, years=3, index="IG", tenor="5yr"):
"""computes on the run returns"""
if date is None:
date = (pd.Timestamp.now() - pd.DateOffset(years=years)).date()
sql_str = "SELECT date, series, closespread AS spread FROM index_quotes " \
"WHERE index=%s and date>=%s and tenor = %s"
df = pd.read_sql_query(sql_str, serenitasdb, parse_dates=['date'], index_col=['date', 'series'],
params=(index.upper(), date, tenor))
df.sort_index(inplace=True)
return (df.groupby(level='series').
transform(lambda x: x.pct_change()).
groupby(level='date').
last())
def realized_vol(index, series, tenor, date=None, years=None):
"""computes the realized spread volatility"""
if date is None:
date = (pd.Timestamp.now() - pd.DateOffset(years=years)).date()
returns = daily_spreads(index, series, tenor)
am = arch_model(returns)
res = am.fit(update_freq=0, disp='off')
return (res.conditional_volatility * math.sqrt(252), res)
def atm_vol_fun(v, ref_is_price=False, moneyness=0.2):
f = interp1d(v.strike.values, v.vol.values, fill_value='extrapolate')
atm_val = v['fwdspread'].iat[0]
otm_val = atm_val * (1 + moneyness) ## doesn't make sense for HY
return pd.Series(f(np.array([atm_val, otm_val])), index = ['atm_vol', 'otm_vol'])
def atm_vol(index, series, moneyness=0.2):
df = pd.read_sql_query('SELECT quotedate, expiry, strike, vol from swaption_quotes ' \
'WHERE index = %s and series = %s',
serenitasdb, index_col=['quotedate', 'expiry'],
params = (index.upper(), series))
index_data = pd.read_sql_query(
'SELECT quotedate, expiry, fwdspread from swaption_ref_quotes ' \
'WHERE index= %s and series = %s',
serenitasdb, index_col = ['quotedate', 'expiry'],
params = (index.upper(), series))
df = df.join(index_data)
df = df.groupby(level=['quotedate', 'expiry']).filter(lambda x: len(x)>=2)
df = df.groupby(level=['quotedate', 'expiry']).apply(atm_vol_fun, index=="HY", moneyness)
df = df.reset_index(level=-1) #move expiry back to the column
return df
def atm_vol_date(index, date):
df = pd.read_sql_query('SELECT quotedate, series, expiry, strike, vol ' \
'FROM swaption_quotes ' \
'WHERE index = %s and quotedate >= %s',
serenitasdb,
index_col=['quotedate', 'expiry', 'series'],
params=(index.upper(), date))
index_data = pd.read_sql_query(
'SELECT quotedate, expiry, series, fwdspread FROM swaption_ref_quotes ' \
'WHERE index= %s and quotedate >= %s',
serenitasdb, index_col=['quotedate', 'expiry', 'series'],
params = (index.upper(), date))
df = df.join(index_data)
df = df.groupby(df.index).filter(lambda x: len(x)>=2)
df = df.groupby(level=['quotedate', 'expiry', 'series']).apply(atm_vol_fun)
df = df.reset_index(level=['expiry', 'series']) #move expiry and series back to the columns
return df
def rolling_vol(df, col='atm_vol', term=[3]):
"""compute the rolling volatility for various terms"""
df = df.groupby(df.index).filter(lambda x: len(x)>2)
def aux(s, col, term):
k = s.index[0]
f = interp1d(s.expiry.values.astype('float'), s[col].values, fill_value='extrapolate')
x = np.array([(k + pd.DateOffset(months=t)).to_datetime64().astype('float') \
for t in term])
return pd.Series(f(x), index=[str(t)+'m' for t in term])
df = df.groupby(level='quotedate').apply(aux, col, term)
# MS quotes don't have fwdspread so they end up as NA
return df.dropna()
def vol_var(percentile=0.99, index='IG'):
df = atm_vol_date("IG", datetime.date(2014, 6, 11))
df = rolling_vol(df, term=[1,2,3])
df = df.sort_index()
df = df.groupby(df.index.date).last()
return df.pct_change().quantile(percentile)
def lr_var(res):
""" computes long run variance of the garch process"""
var = res.params.omega/(1 - res.params['alpha[1]'] - res.params['beta[1]'])
return math.sqrt(var) * math.sqrt(252)
def index_rolling_returns(date=None, years=3, index="IG", tenor="5yr"):
"""computes on the run returns"""
if date is None:
date = (pd.Timestamp.now() - pd.DateOffset(years=years)).date()
sql_str = "SELECT date, series, closespread AS spread FROM index_quotes " \
"WHERE index=%s and date>=%s and tenor = %s"
df = pd.read_sql_query(sql_str, serenitasdb, parse_dates=['date'], index_col=['date', 'series'],
params=(index.upper(), date, tenor))
df.sort_index(inplace=True)
df = df.groupby(level='series').pct_change()
return df.groupby(level='date').last()
def get_index_spread(index, series, date, conn):
with conn.cursor() as c:
c.execute("SELECT closespread from index_quotes " \
"WHERE index=%s and series=%s and date=%s and tenor='5yr'",
(index, series, date))
try:
spread, = c.fetchone()
except TypeError:
spread = None
conn.commit()
return spread
def get_index_ref(index, series, date, expiry, conn):
with conn.cursor() as c:
c.execute("SELECT ref, fwdspread from swaption_ref_quotes " \
"WHERE index=%s and series=%s and quotedate::date=%s "\
"AND expiry=%s ORDER BY quotedate desc",
(index, series, date, expiry))
try:
ref, fwdspread = c.fetchone()
except TypeError:
ref, fwdspread = None, None
conn.commit()
return ref, fwdspread
def get_strike(index, series, date, expiry, conn):
with conn.cursor() as c:
c.execute("SELECT strike from index_quotes " \
"WHERE index=%s and series=%s and quotedate::date=%s "\
"AND expiry=%s ORDER BY quotedate desc",
(index, series, date, expiry))
try:
stri
except TypeError:
ref, fwdspread = None, None
conn.commit()
return ref, fwdspread
def get_option_pnl(strike, expiry, index, series, start_date, engine):
for s in [strike, strike+2.5]:
df = pd.read_sql_query("SELECT quotedate, (pay_bid+pay_offer)/2 AS pay_mid, " \
"(rec_bid+rec_offer)/2 AS rec_mid FROM swaption_quotes " \
"WHERE strike=%s and expiry=%s and index=%s and series=%s" \
"and quotedate>=%s", engine,
params=(s, expiry, index, series, start_date),
index_col='quotedate', parse_dates=['quotedate'])
if not df.empty and df.index[0] == start_date:
strike = s
break
else:
raise ValueError("Something wrong")
df = df.groupby(df.index.normalize()).last()
if expiry < datetime.date.today():
spread = get_index_spread(index, series, expiry, engine.raw_connection())
underlying = Index.from_name(index, series, "5yr", expiry, 1e4)
underlying.spread = spread
pv = underlying.pv
underlying.spread = strike
if spread > strike:
pay_mid, rec_mid = pv-underlying.pv, 0
else:
pay_mid, rec_mid = 0, underlying.pv - pv
pv = underlying.pv
df = df.append(pd.DataFrame([[pay_mid, rec_mid]],
columns=['pay_mid', 'rec_mid'],
index=[pd.Timestamp(expiry)]))
return df, strike
def sell_vol_strategy(index="IG", months=3):
engine = dbengine('serenitasdb')
conn = engine.raw_connection()
with conn.cursor() as c:
c.execute("SELECT DISTINCT ON (expiry) series, expiry FROM " \
"swaption_quotes GROUP BY series, expiry ORDER BY expiry, series desc")
d = {}
for series, expiry in c:
start_date = BDay().rollback(expiry - pd.DateOffset(months=months)).date()
if start_date == datetime.date(2016, 1, 15):
start_date = datetime.date(2016, 1, 14)
elif start_date == datetime.date(2014, 7, 18):
start_date = datetime.date(2014, 7, 17)
elif start_date == datetime.date(2014, 11, 17):
start_date = datetime.date(2014, 11, 14)
elif start_date == datetime.date(2015, 3, 13):
start_date = datetime.date(2015, 3, 12)
if start_date > datetime.date.today():
break
for s in [series, series - 1]:
ref, fwdspread = get_index_ref(index, s, start_date, expiry, conn)
if fwdspread is not None:
break
else:
continue
strike = round(fwdspread/2.5) * 2.5
pnl, strike = get_option_pnl(strike, expiry, index, s, start_date, engine)
d[(s, strike, expiry)] = pnl
conn.commit()
return d
def aggregate_trades(d):
r = pd.Series()
for v in d.values():
r = r.add(-v.sum(1).diff().dropna(), fill_value=0)
return r
def compute_allocation(df):
Sigma = df.cov().values
gamma = cvxpy.Parameter(sign='positive')
mu = df.mean().values
w = cvxpy.Variable(3)
ret = mu.T*w
risk = cvxpy.quad_form(w, Sigma)
prob = cvxpy.Problem(cvxpy.Maximize(ret - gamma * risk),
[cvxpy.sum_entries(w) == 1,
w >= -2,
w <= 2])
gamma_x = np.linspace(0, 0.02, 500)
W = np.empty((3, gamma_x.size))
for i, val in enumerate(gamma_x):
gamma.value = val
prob.solve()
W[:,i] = np.asarray(w.value).squeeze()
fund_return = mu @ W
fund_vol= np.array([math.sqrt(W[:,i] @ Sigma @W[:,i]) for i in range(gamma_x.size)])
return (W, fund_return, fund_vol)
if __name__ == "__main__":
d1 = sell_vol_strategy(months=1)
d2 = sell_vol_strategy(months=2)
d3 = sell_vol_strategy(months=3)
all_tenors = pd.concat([aggregate_trades(d) for d in [d1, d2, d3]], axis=1)
all_tenors.columns = ['1m', '2m', '3m']
|