1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
|
import pandas as pd
import re
import os
import pdb
from download_emails import update_emails
import datetime
import logging
import pickle
import sys
logging.basicConfig(filename=os.path.join(os.getenv("LOG_DIR"), 'emails_parsing.log'),
level=logging.WARNING,
format='%(asctime)s %(message)s')
def makedf(r, indextype, quote_source):
if indextype=='IG':
cols = ['strike', 'rec_bid', 'rec_offer', 'delta_rec', 'pay_bid',
'pay_offer', 'delta_pay', 'vol']
else:
cols = ['strike', 'rec_bid', 'rec_offer', 'delta_rec', 'pay_bid',
'pay_offer', 'delta_pay', 'vol', 'price_vol']
if quote_source == "BAML":
cols.append('gamma')
if quote_source == "GS":
cols.append("tail")
df = pd.DataFrame.from_records(r, columns = cols)
for col in ['delta_rec', 'delta_pay', 'vol', 'price_vol', 'gamma', 'tail']:
if col in df:
df[col] = df[col].str.strip("%").astype('float')/100
if quote_source == "GS":
for col in ["pay_bid", "pay_offer", "rec_bid", "rec_offer"]:
df[col] = df[col].str.strip('-')
df['delta_pay'] *= -1
for k in df:
if df.dtypes[k] == 'object':
try:
df[k] = pd.to_numeric(df[k])
except ValueError:
pdb.set_trace()
df['quote_source'] = quote_source
df.set_index('strike', inplace=True)
return df
def parse_quotedate(fh, date_received):
for line in fh:
line = line.rstrip()
if line.startswith("At"):
for p in ['%m/%d/%y %H:%M:%S', '%b %d %Y %H:%M:%S', '%m/%d %H:%M:%S']:
try:
quotedate = pd.to_datetime(line, format=p, exact=False)
except ValueError:
continue
else:
if quotedate.year == 1900: # p='%m/%d %H:%M:%S'
quotedate = quotedate.replace(year=date_received.year)
break
else:
raise RuntimeError("can't parse date")
return quotedate
def parse_refline(line):
regex = "Ref:(?P<ref>\S+)\s+(?:Fwd Px:(?P<fwdprice>\S+)\s+)?" \
"Fwd(?: Spd)?:(?P<fwdspread>\S+)\s+Fwd Bpv:(?P<fwdbpv>\S+)" \
"\s+Expiry:(?P<expiry>\S+)"
m = re.match(regex, line)
try:
d = m.groupdict()
d['expiry'] = pd.to_datetime(d['expiry'], format='%d-%b-%y')
except AttributeError:
logging.error("something wrong with " + fh.name)
return d
def parse_baml(fh, indextype, series, quotedate, *args):
option_stack = {}
fwd_index = []
line = ""
while True:
if line == "":
try:
line = next(fh)
except StopIteration:
break
if line.startswith("Ref"):
d = parse_refline(line)
d.update({'quotedate': quotedate, 'index': indextype, 'series': series})
df, line = parse_baml_block(fh, indextype)
option_stack[d['expiry']] = df
fwd_index.append(d)
else:
line = ""
if option_stack:
fwd_index = pd.DataFrame.from_records(fwd_index,
index='quotedate')
return option_stack, fwd_index
else:
raise RuntimeError("empty email: " + fh.name)
def parse_baml_block(fh, indextype):
next(fh) ## skip header
r = []
line = ""
for line in fh:
line = line.strip()
if line.startswith("Ref") or line == "":
break
line = re.sub("[/|]", " ", line)
vals = re.sub(" +", " ", line).rstrip().split(" ")
if len(vals) < 3: ## something went wrong
line = ""
break
r.append(vals)
return makedf(r, indextype, "BAML"), line
def parse_ms_block(fh, indextype):
next(fh) ## skip header
r = []
for line in fh:
line = line.rstrip()
if line == "":
break
strike, payer, receiver, vol = line.split("|")
strike = strike.strip()
if indextype == "HY":
strike = strike.split()[0]
pay_bid, pay_offer, pay_delta = payer.strip().split()
rec_bid, rec_offer, rec_delta = receiver.strip().split()
vals = [strike, rec_bid, rec_offer, rec_delta,
pay_bid, pay_offer, pay_delta]
vol = vol.strip()
if indextype == "HY":
price_vol, vol = vol.replace("[","").replace("]","").split()
vals += [vol, price_vol]
else:
vals += [vol]
r.append(vals)
return makedf(r, indextype, "MS")
def parse_nomura_block(fh, indextype):
next(fh) ## skip header
r = []
for line in fh:
line = line.rstrip()
if line == "":
break
strike, receiver, payer, vol, _ = line.split("|", 4)
strike = strike.strip()
pay, pay_delta = payer.strip().split()
rec, rec_delta = receiver.strip().split()
pay_bid, pay_offer = pay.split("/")
rec_bid, rec_offer = rec.split("/")
vol = vol.strip()
vals = [strike, rec_bid, rec_offer, rec_delta,
pay_bid, pay_offer, pay_delta, vol]
if indextype == "HY": # we don't have price vol
vals.append(None)
r.append(vals)
return makedf(r, indextype, "NOM")
def parse_gs_block(fh, indextype):
next(fh)
r = []
for line in fh:
line = line.rstrip()
if line == "":
break
vals = line.split()
if indextype=='HY':
vals.pop(2)
vals.pop(9)
else:
vals.pop(1)
vals.pop(8)
strike = vals.pop(0)
if indextype == "HY":
vals.pop(0) #pop the spread
pay, pay_delta = vals[:2]
pay_bid, pay_offer = pay.split("/")
rec_bid, rec_offer = vals[2].split("/")
vol = vals[3]
tail = vals[6]
vals = [strike, rec_bid, rec_offer, None, pay_bid, pay_offer, pay_delta, vol]
if indextype == "HY":
vals.append(None)
vals.append(tail)
r.append(vals)
return makedf(r, indextype, "GS")
def parse_ms(fh, indextype):
option_stack = {}
for line in fh:
line = line.rstrip()
if "EXPIRY" in line:
expiry = line.split(" ")[1]
expiry = pd.to_datetime(expiry, format="%d-%b-%Y")
option_stack[expiry] = parse_ms_block(fh, indextype)
return option_stack
def parse_nomura(fh, indextype):
option_stack = {}
for line in fh:
line = line.rstrip()
if "EXPIRY" in line:
expiry = line.split(" ")[0]
expiry = pd.to_datetime(expiry, format="%d-%b-%y")
option_stack[expiry] = parse_nomura_block(fh, indextype)
return option_stack
def parse_gs(fh, indextype, series, quotedate, ref):
option_stack = {}
fwd_index = []
d = {'quotedate': quotedate, 'index': indextype,
'series': series, 'ref': ref}
for line in fh:
line = line.rstrip()
if line.startswith("Expiry"):
m = re.match("Expiry (\d{2}\w{3}\d{2}) \((?:([\S]+) )?([\S]+)\)", line)
if m:
expiry, fwdprice, fwdspread = m.groups()
expiry = pd.to_datetime(expiry, format='%d%b%y')
d.update({'fwdspread': fwdspread, 'fwdprice': fwdprice,
'expiry': expiry})
fwd_index.append(d)
option_stack[expiry] = parse_gs_block(fh, indextype)
fwd_index = pd.DataFrame.from_records(fwd_index,
index='quotedate')
return option_stack, fwd_index
subject_baml = re.compile("(?:Fwd:){0,2}(?:BAML )?(\w{2})([0-9]{1,2})\s")
subject_ms = re.compile("[^$]*\$\$ MS CDX OPTIONS: (IG|HY)(\d{2})[^-]*- REF[^\d]*([\d.]+)")
subject_nomura = re.compile("(?:Fwd:)?CDX (IG|HY)(\d{2}).*- REF:[^\d]*([\d.]+)")
subject_gs = re.compile("GS (IG|HY)(\d{2}) 5y.*- Ref [^\d]*([\d.]+)")
def parse_email(email):
with open(email.path, "rt") as fh:
date_received = datetime.datetime.fromtimestamp(int(fh.readline())/1000)
subject = next(fh)
for source in ['BAML', 'MS', 'NOMURA', 'GS']:
m = globals()['subject_'+source.lower()].match(subject)
if m:
if source == 'BAML':
indextype, series = m.groups()
else:
indextype, series, ref = m.groups()
ref = float(ref)
series = int(series)
quotedate = parse_quotedate(fh, date_received)
parse_fun = globals()['parse_'+source.lower()]
if source == 'BAML':
return (quotedate, indextype, series), \
parse_fun(fh, indextype, series, quotedate)
elif source == "GS":
return (quotedate, indextype, series), \
parse_fun(fh, indextype, series, quotedate, ref)
else:
option_stack = parse_fun(fh, indextype)
fwd_index = pd.DataFrame({'quotedate': quotedate,
'ref': ref,
'index': indextype,
'series': series,
'expiry': list(option_stack.keys())})
fwd_index.set_index('quotedate', inplace = True)
return (quotedate, indextype, series), (option_stack, fwd_index)
raise RuntimeError("can't parse subject line: {0} for email {1}".format(
subject, email.name))
def write_todb(swaption_stack, index_data):
from sqlalchemy import MetaData, Table
from db import dbengine, nan_to_null
import psycopg2
serenitasdb = dbengine('serenitasdb')
psycopg2.extensions.register_adapter(float, nan_to_null)
meta = MetaData(bind=serenitasdb)
swaption_quotes = Table('swaption_quotes', meta, autoload=True)
for r in swaption_stack.to_dict(orient='records'):
serenitasdb.execute(swaption_quotes.insert(), r)
#ins = swaption_quotes.insert().values(swaption_stack.to_dict(orient='records')).execute()
index_data.to_sql('swaption_ref_quotes', serenitasdb, if_exists='append', index=False)
def get_email_list(date):
"""returns a list of email file names for a given date
Parameters
----------
date : string
"""
with open(".pickle", "rb") as fh:
already_uploaded = pickle.load(fh)
df = pd.DataFrame.from_dict(already_uploaded, orient='index')
df.columns = ['quotedate']
df = df.reset_index().set_index('quotedate')
return df.loc[date,'index'].tolist()
def pickle_drop_date(date):
with open(".pickle", "rb") as fh:
already_uploaded = pickle.load(fh)
newdict = {k: v for k, v in already_uploaded.items() if v.date() != date}
with open(".pickle", "wb") as fh:
pickle.dump(newdict, fh)
if __name__=="__main__":
update_emails()
data_dir = os.path.join(os.getenv("DATA_DIR"), "swaptions")
emails = [f for f in os.scandir(data_dir) if f.is_file()]
swaption_stack = {}
index_data = pd.DataFrame()
try:
with open(".pickle", "rb") as fh:
already_uploaded = pickle.load(fh)
except FileNotFoundError:
already_uploaded = {}
for f in emails:
if f.name in already_uploaded:
continue
else:
try:
key, (option_stack, fwd_index) = parse_email(f)
except RuntimeError as e:
logging.error(e)
else:
if key[0] is None:
logging.error("Something wrong with email: {}".format(f.name))
continue
swaption_stack[key] = pd.concat(option_stack, names=['expiry', 'strike'])
index_data = index_data.append(fwd_index)
already_uploaded[f.name] = key[0]
if index_data.empty:
sys.exit()
for col in ['fwdbpv', 'fwdprice', 'fwdspread', 'ref']:
if col in index_data:
index_data[col] = index_data[col].astype('float')
index_data['index'] = index_data['index'].astype('category')
swaption_stack = pd.concat(swaption_stack, names=['quotedate', 'index', 'series'])
# import feather
# feather.write_dataframe(swaption_stack, '../../data/swaptions.fth')
# feather.write_dataframe(index_data, '../../data/index_data.fth')
swaption_stack = swaption_stack.reset_index()
swaption_stack = swaption_stack.drop_duplicates(['quotedate', 'index', 'series', 'expiry', 'strike'])
index_data = index_data.reset_index()
index_data = index_data.drop_duplicates(['quotedate', 'index', 'series', 'expiry'])
write_todb(swaption_stack, index_data)
with open(".pickle", "wb") as fh:
pickle.dump(already_uploaded, fh)
|